Computability and Complexity of RSRL

Stephan Kepser

SFB 441, University of Tibingen
Nauklerstr. 35, 72074 {bingen, Germany
kepser@sfs.uni-tuebingen.de

Version of July 23, 2001

1 Introduction

RELATIONAL SPECIATE REENTRANT LoGiC (henceforce RSRL[13,112)) is a de-
scription logic designed by Frank Richter, Manfred Sailer, and Gerald Penn to for-
maliseHEAD-DRIVEN PHRASE STRUCTURE GRAMMAR [9,/10]. HPSG is one of the
leading paradigms in current linguistic research. It is in particular characterised by a
high degree of formalisation and in opposite to its contender GB non-transformational.
RSRL is based o8PECIATE REENTRANT LOGIC [6,7], a feature logic for HPSG de-
veloped by King. RSRL, as SRL, is a description logic, it is designed to describe
(linguistic) entities and not to talk about truth. A description of this logic can be true
or false of an object. Therefore the denotation of such a description are those objects
on which the description fits or for which the description is true. A linguistic entity is
described mainly by sorts and features. Sorts describe the type of the entity, such as
word or phraseor subcat they act as unary relations partitioning the domain of dis-
course. Features describe sub-parts of entities such aste(phonetic/phonologic)

or SYNSEM (syntactic and semantic) sub-parts affard. The main two extensions of
RSRL over SRL is the introduction of arbitrary relations and quantification. Rela-
tions and quantification are specific to RSRL and not classical. Rich#kmafgues

at length that these extensions are required to fully formalise the principles of HPSG
[1Q]. Here, we will not enter into the linguistic discussion. Neither can we explain
the design goals of RSRL. We will rather investigate computational and complexity
properties of RSRL. In doing so we want to contribute to a better understanding of this
feature logic, that is by some people regardethasogic for HPSG.

The notion of the complexity of a logic stems from descriptive complexity theory. In
principle, classes of finite structures can be defined in (at least) two different fashions.
Classically, classes of structures are defined by logical axiomatisations. Hence it is the
expressive power of the logic that decides which classes can be defined. Computation-
ally, classes of structures can be defined by means of the computing devices that can
compute if a candidate structure belongs to the class or if it does not. Hence it is the
computational complexity that decides which classes can be defined. Descriptive com-
plexity theory bridges between these two approaches by investigating the relationship

between the expressive power of a logic on the one side and the complexity of a com-
puting machine on the other. So, there are two questions: Given classes of structures
defined in a particular logic, what is the required computational power to decide these
classes? An example answer is that classes of structures defined in classical first order
logic plus transitive closure require LOGSPACE-bounded non-deterministic Turing
machines. And given classes of structures decided by some computing machine, what
is the logic that can define these classes? Again an example answer is that classes of or-
dered structures that can be decided by LOGSPACE-bounded non-deterministic Turing
machines can be axiomatised by first order logic plus transitive closure. Thus on finite
ordered structures first order logic with transitive closure and LOGSPACE-bounded
non-deterministic Turing machines define exactly the same classes of structures, as
Immerman showed].

In this paper, we start from classes of finite structures definable in RSRL and search
for the computing device that is required to decide these classes. To do so, we will sys-
tematically distinguish between two types of RSRL: RSRL as defined by Richter and
so-called chainless RSRL, which is a semantically weaker version of RSRL. Richter
introduces the notion of a chain. A chain is a potentially empty, finite sequence of
objects in the denotation domain. One of the peculiarities of RSRL is the fact that
the denotation of a variable may not only be a single object, but also a chain of ob-
jects. In chainless RSRL, a variable is always assigned to a single object. So, the
syntax of RSRL and chainless RSRL are identical, while the semantics differs in that
the denotation domain of a variable in chainless RSRL is always a single object of the
universe (as is the case in classical logic) while it can be a single object or a chain
of objects in (general) RSRL. Unsurprisingly, the introduction of chains has quite an
impact on the expressiveness and computability of RSRL, as we will show. Richter
[12] argues that they are necessary to formalise the meaning of HPSG-principles that
contain references to sets or lists like, e.g., SWBCATEGORIZATION Principle.

After a short formal introduction to RSRL in the second section we present the first
main result in the third one by showing that truth of a formula in a finte RSRL-
interpretation is undecidable. Kepser showedBhthat satisfiability of an SRL-
formula is decidable, while King and Sima8][proved the stronger notion of gram-
maticality of an SRL-formula to be undecidable. It is well known that satisfiability of
classical first order logic is undecidabl#.[On the other hand, first order logic plus
transitive closure is in LOGSPACE, as Immermdhghowed. That is to say, given

a formula of first-order logic with transitive closure and a finite first order structure,
the complexity to calculate whether the formula holds true in the given structure is
LOGSPACE bounded by the size of the structure. It turns out that the corresponding
qguestion for RSRL, namely given an RSRL-formula and a finite RSRL-structure, is the
formula true in the structure is in general undecidable. The undecidability is proven
by showing that Post Correspondence Problems can be coded in RSRL-chains. This
result is quite remarkable since it shows that the seemingly innocent addition of chains
is really a one with far reaching consequence. Checking the truth or falsehood of a
formula in afinite structure is amoungst the minimal requirements one can put onto
a logic. Also, King and Simov’s undecidability proof needs infinite structures. We
remain in the realm of finite structures, and the introduction of chains, which are also
finite, is motivated by linguistic needs.

The fourth section shows that chainless RSRL is in PTIME. After we saw the impact
of allowing chains it is natural to ask where does RSRL stand if chains were removed.
One can show that the classes of finite structures definable in chainless RSRL are de-
cidable by PTIME-bounded Turing machines. To state that differently, given a Turing
machine that represents a chainless RSRL formula and a finite RSRL-structure as in-
put to the machine, the denotation of the formula in that structure can be computed in
a time polynomial to the size of the structure. Or taken chainless RSRL as a query lan-
guage, the complexity class of evaluating a query in a finite structure is PTIME. This
result is a lot closer to the classical result for first order logic. That we stillend up in a
different complexity class is a consequence of the specific type of quantification found
in RSRL. This section heavily draws fror8][Chapter 6 in terms of concepts and
technical definitions. Hence understanding this section without a knowledge of that
chapter in the book by Ebbinghaus and Flum may be difficult, although all relevant
definitions are present here.

The fifth section shows that a classical first order sentence has a classical model
if and only if it has a so-called fully connected chainless RSRL model. It is very
likely that the class of fully connected RSRL-models is neither classically nor RSRL-
axiomatisable. If that is right then first-order logic cannot be encoded in RSRL.

2 RSRL

RSRL is a logic designed to describe HPSG-feature structures. An HPSG feature
structure is a directed rooted finite hyper graph of a particular kind with sorts as node
labels and features as edge labels. Features are functional. The distribution of sorts
and features is not arbitrary, there are strong co-occurrence restrictions that allow the
appearance of certain features only in the context of certain sorts. An example of how
an HPSG feature structure looks like is given in Figlirelt is the structure of the
English pronourshe([1Q], p. 17).

A full introduction to RSRL in its linguistic motivations or design decisions is far be-
yond the scope of this paper. This section rather summarises the technical definitions
of RSRL that define its core. It is an excerpt of Chapter 3.1.1 “The Description Lan-
guage” of [L2] where a rich explanation with examples of all the technical definitions
that follow can be found.

Definition 1 Z is asignatureiff

Zisaseptupleg,C, 5,4, F, R, AR),

(G,C) is a partial order of sorts,
for eacho’ € G,

S= {oe g lif o' C o theno = o

4 is a set of attributes or features,

F is a partial function from the Cartesian product@find4 to G,

for eacho; € G, for eacho; € G and for eaclu € 4,

if 7(01,0) is defined ana, C 01
then ¥ (02,0) is defined andfF (o,,a) C F (01,0),

}, the set of most specific sorts

3

L] .
nelist

® nom
. CASE
.e list /

PHON ® noun
HEAD
SUBCAT
LOCAL
SYNSEM CATEGORY *.4;
[]
> synsem ° .
*word local ®elist
CONTENT .
INDEX fem
CONTEXT *ppro GEND

ref [NUM
BACKGROUND RESTR

L
sing

L4 *context PERS

neset

€

(‘ RELN

psod T T o female ®3rd

INSTANCE

Figure 1:Structure of the English pronowhe

R is afinite set of relation symbols, and
AR is a total function fromR_to N, the arities of the relations.

The partial ordeG,C) of sorts exists mainly for linguistic purposes. The technially
relevant part of it is the sef of its most specific sorts. Therefore, other than in this
section, the partial order will remain unmentioned in our wogk.defines compati-

bility restrictions between sorts and features. It enables the linguist to state that only
certain sorts and features may co-occur.

SupposeM is a set.M* is the set of finite strings oveM, including the empty string.
We will refer to it as the set of finite sequences of elementMof Similarly, M™
is the set of nonempty finite sequences of elementd.ofor convenience, we will
henceforth writeM as an abbreviation favl & M*.

RSRL signatures are interpreted as follows:

Definition 2 For each signaturg = (G,C,S$,4, F,R, AR), | is aZ interpretation
iff

l'is a quadrupléU,S, A R),

U is a set, the universe or carrier,

S is a total function fromJ to §,

A is a total function fromA4 to the set of partial functions frottd to U,
for eacha € 4 and eachu ¢ U,

if A(ar)(u) is defined

then 7 (S(u),a) is defined, an®(A(a)(u)) T F(S(u),a), and
for eacha € 4 and eachu e U,

if F(S(u),a) is defined ther\(a)(u) is defined,

R is a total function fron®_ to the power set ofl J U", and
neN

for eachp € ®, R(p) € U™,

We sometimes call interpretations also structures. As one can see in the last line,
relations do not only range over tuples of individuals, but over tuples of chains of
individuals.

Definition 3 For each signature = (G,C, 5,4, F,R,AR),
G = G U{chain echainnechainmetatog,
C = C U {(echainchain), (nechainchain)} U { (0,0))o €G\G }
U { (o, metatop ’0 €qg }

S=Su {echainnechair}, and
A=A4U{t}.

Definition 4 For each signatutle= (G,C, 5,4, F, R, AR), for eachz interpretation
| =(U,S,A,R),

S is the total function fronU to § such that
for eachu € U, S(u) = S(u),

foreachu; € U, ..., foreactu, € U,
~ echain ifn=0,
S({Ug,...,Un)) = { nechain ifn>0 ' 2"

A is the total function from7 to the set of partial functions frod to U such
that

for eacha € 4, A(a) = A(a),
A(1) is the total function fronU* to U such that for each
(U, ..., un) € UT,

A(1)({uo,...,un)) = Up, and
A(>) is the total function fronu* to U* such that for each
(Ug,...,un) € UT,

~

A(>)((ug,-..,Un)) = (U1,...,Un).

T returns the head (left-most element) of a non-empty chainyaisd-est.
VAR _is a countably infinite set of symbols, the variables.

Definition 5 For each signatur = (G,C, 5,4, F,R, AR), T is the smallest set
such that

e T,
foreachve Y4R%, v e 7% and
for eacha € 4 and eacht € 72, 10 € T2,

We call each element afZ a > term. A term consists of either the reserved symbol

‘’ or a variable followed by a (possibly empty) string of symbols of the expanded
attribute set. To determine the interpretation of a term, we need the notion of a variable
assignment.

Definition 6 For each signaturg, for eachs interpretatiori = (U,S,A,R),

Assg = U(V’QIR is theset of variable assignments in

We note that the denotation of a variable can be a chain of elementdfranterms
are interpreted as partial functions frasrto U.

Definition 7 For each signatute= (G,C, 5,4, F, R, AR), for eachz interpretation
I = (U,S,A,R), for eachasse Ass, T2%is the total function fromZZ to the set of
partial functions fronlJ to U such that for each € U,

T2%:)(u) is defined and >Y:)(u) = u,
for eachv € VAR, T2%(v)(u) is defined and,**Yv)(u) = asgv),
for eacht € 7%, for eacha € 4,
T2%Y1a)(u) is defined
iff T,25Y1)(u) is defined an@(a)('l’lass(T)(u)) is defined, and
if T2ta)(u) is defined

~

thenT**Yta) (u) = A(a) (T*XT)(u)).
We now define the set of descriptions (or formulae) of RSRL.

Definition 8 For each signatur = (G,C, 5,4, F, R, AR), D* is the smallest set
such that

for eacho ¢ é for eacht € 72,1~ 0 € D%,

for eachty € 7%, for eacht, € 7%, 11 ~ 1o € D2,

for eachp € R, for eachx; € VAR, ..., for eachk¢ o) € VAR,
p(X1,. .., Xag (p) € D%,

for eachd € ©*, -6 € ©?,

for eachd; € D2, for eachd, € D%, [61 A &,] € D2,

for eachd; € D%, for eachd, € D%, [8;V &,] € D2.

for eachx € V4R, for eachd € ©%, Ixd € D,

for eachx € V4R, for eachd € D%, ¥xd € D,

In RSRL, the quantification domains are so-called commponents of elements. Given an
element in an interpretation, its components are all those elements that can be reached
via some feature path:

Definition 9 For each signatutre= (G,C, 5,4, F, R, AR), for eachz interpretation
I=(U,S,A,R), and for eachu € U,

for someasse Ass,

for somemne 4*,
T2 (u) is defined, an
U = T29:m)(u)

Cof=< U eu

The following definition is a variant of the usual definition of a modified variable
assignment.

Definition 10 For each signaturg, for eachz interpretatiorl = (U, S, A,R), for each
assc Ass, for eachv € 4R, for eachw € V4R, for eachu € U,

as(w) = u ifv=w
FW) = asgw) otherwise.

Here is finally the definition of the denotation of a description.

Definition 11 For each signaturg = (G,C, 5,4, F,R,AR), for eachZ interpreta-
tionl=(U,S,A,R), for eachasse Ass, Di*%is the total function fronD* to the power
set ofU such that

for eacht € 7%, for eacho € G,

IIaSS(T)(u) is defined, an(}
S(TEXT)(u) Eo ’
for eachty € 72, for eacht, € T2,

T2%11)(u) is defined, d}

D?SS(TNO)—{UEU

T2%(12)(u) is defined, an
T2511) (U) = T*Y12) (U)
for eachp € R, for eachxy € VAR, ..., for eachks) € VAR,
Dlass(p(xlv o >Xﬁl9{(p)))
={ueU|(asgx),...,asxXag(p))) € R(P) },
for eachd € D%,
Di*Y—3) = U\D{*%3),
for eachd; € ©%, for eachd, € D2,
Di*Y[81 A &2]) = D{*Y(81) N D{*Y&y),
for eachd; € D%, for eachd, € D2,
DF*Y[81 v &]) = Df*8:) UDF*3,).
for eachv € V4R, for eachd € ©%,

for someu’ € Cof,
D&Y3v3) = { ue U ,

ue D?S% (d)
for eachv € V4%, for eachd € D,
for eachu’ € Cof, }

D*Y(t1~12) = {u el

ue D™ (3)

DYV o) = { ueu

It is in particular the interpretation of quantification which is special. It contains two
unusual elements: localisation and transitive closure. Localisation because the quan-
tification for a particular element in the universe ranges only over its components, and
transitive closure, because the components form the transitive closure of the one step
transition from one element in the universe to the next via features.

To get to the chainless variant of RSRL some of the above definitions need slight mod-
ifications. In Definitiori2 of interpretations, relations must be relations on individuals,
only, not on chains. The extended signature and its interpretation in DefinBions
and4 are no longer needed. And in Definiti@variables can only be assigned to
individuals, not chains.

3 Truth in a Finite RSRL-Structure is Undecidable

Since RSRL is a description logic, the notion of truth is only indirectly present. But
already Richter observes that one can say an RSRL-forgnisl&rue in some interpre-
tation| with variable assiggnmettif its denotatiorD'ﬁ(cl)) = U, is the whole universe.

In this case we just writd,b) = ¢. A formula is false, if it is not true.

One of the important differences between RSRL and classical logic is the fact that on
the classical side the truth of a sentence in a given finite model can be decided while
on the RSRL side it cannot in general. In the classical case there exists a result in
descriptive complexity theory (se8][Chapter 6) by Immermard] that shows that

even if we enrich first order logic by deterministc transitive closure, the complexity for
deciding whether or not a sentence is true in a given finite structure is in LOGSPACE,
so very low. The situation for RSRL is quite different.

Theorem 12 Given a sentencé and a finite RSRL-interpretation it is in general
not decidable, if modelsp.

We prove this therorem by coding Post correspondence problems in finite RSRL-
structures. Lef be an alphabeth. A Post correspondence systiethig a finite

setP of ordered pairs of nonempty strings; thafiss a finite subset of ¥ x ™. A

match ofP is any stringw € I'* such that, for soma > 0 and some (not necessarily
distinct) pairs(ug,vi),..., (Un,Vn) € P it is the case thav=u;...up = Vvi1...Vy. The

Post correspondence problem is the question whether there exists a match for a given
systemP. Post showed that this question is in general undecidable ¢dnsists of

more than 2 letters).

Let P be a Post correspondence system. It will be coded as follows. Each letter of
I is a node in the feature structure, Bds the carrier of the RSRL-interpretation.
There exists only one singe satit is appropriate for all letters. There is a single
featuref. Featuref is appropriate for sor$ and sorts is appropriate fo«s, f). Let

k be the cardinality of ande be an enumeration df. We define(e(i),e(i +1)) € f

for eachO < i < k and(e(k),e(1)) € f. Thusf forms a complete cycle around the
letters. Consequently, for eaehe ' : Co? =T. This simplifies proofs significantly:
Quantification now behaves (almost) classically, there are no strange interactions with
these components.

We define three relations, all of them are relationscoainsof letters. The first
relation,Post, contains all pairs o, i.e., for allu,v € ' : (u,v) € Post iff (u,v) € P.
The second relatiorGonc, defines concatenation of chains of letters:

vxyzConc(x,y,z) « (S(x)~ echaimy=2) V
(8(x) ~ nechaim
dwrir i Xt =WAZE =WAX> =11
NZ> = rz/\Conc(rl,y,rz))

Lemma 13 For all chainsx,y,z< '™ : Conc(X,Y, 2) if and only ifzis the concatenation
of x andy.

Proof. Letx,y,ze I'* with Conc(X,y,z). We show thar is the concatenation efandy

by an induction on the length af If xis the empty chain, then the first disjunct holds
and, sincg/ = z, clearlyzis the concatenation afandy. If xis non-empty, then, by the
second disjunct, there is a lett@which is the head of and the head af and a chain
r1 which is the tail ofx and a chairr; which is the tail ofz such thatConc(ry,y,r2).
Since the length of; is smaller than that o, it follows by the induction hypothesis
thatr, is the concatenation @f andy. Thuswr; is the concatenation efr; andy.

Let x,y,z € I'* with z being the concatenation &fandy. We show thatonc(x,y, z)
by an induction on the length of If x is the empty chain, thep= z and thus the
first disjunct holds and therefo@onc(x,y,z). If X is non-empty, then we can split it
up into the first lettew of x and the rest; of X. Sincezis the concatenation ofand
y, we know we can split upalso andv must be the first letter of we call the rests.
Clearly, r; is the concatenation of andy. By induction hypothesisConc(ry,Y,r2).
Thus the second disjunct holds, and therefosec(x,y, z). [

The third relationPost-Chain, contains all pairs of chains that can be constructed by
pairwise concatenating pairs froPost.

VXyPost-Chain(X,y) <«
Post(X,y) V
(3u1 Uzva Vo S(u1) ~ nechain\ S(uy) ~ nechaim §(v1) ~ nechain
A§(V) ~ nechaim Conc(us, Uz, X) A Conc(vy, Va,)
A Post-Chain(ug, v1) A Post(ug, V2))

A pair of chains is irPost-Chain iff it is a pair of the Post correspondence systesst
or both components can be split up into subchains the first of whichResChain
and the second a pair of the Post correspondence sysigm

Lemma 14 For all chainsx,y € ' : Post-Chain(x,y) if and only if there is am > 0
and stringsuy, ..., Un,V1,...,Vp € I such thatx=u;...un, y = Vv;...V, and for each
1<i<n:(u,v)€P.

Proof. Let there be am > 0 and stringsuy,...,Un,V1,...,Vy € [T such thatx =
Ui...Un, Y=Vi...Vyand for eacll <i <n:(u;,Vv) € P. We showPost-Chain(X,y) by

an induction om.

Base casen = 1. In this case(x,y) € P and (x,y) € Post and therefore(x,y) €
Post-Chain by the first disjunct of the definition.

Step cas@& > 1. Leta; = up...up—1 andby =vj...vp_1. Then(ag,b;) € Post-Chain
by induction hypothesisa; andb; are non-empty chains by definition, are- ajuy
andy = byv,. Of course(un, V) € Post. Hence the second disjunct of tRest-Chain
definition holds. And thereforgx,y) € Post-Chain.

Let (x,y) € Post-Chain. Then by definition oPost-Chain either(x,y) € P or x is the
concatenation of the two non-empty chainsindu,, y is the concatenation of the two
non-empty chains;, andv,, (uz,v2) € P and(us,v1) € Post-Chain, andu; is shorter
thanx asvy is shorter thary. The argument can be repeated for the [pairv;) and

so on. The splitting process must terminate since the resulting pair is always smaller.
And each step chops of a pair frdm Hence(x,y) is indeed the concatenation of pair
from P. [

Now consider the formula
IxPost-Chain(X, X).

By the above lemma, this formula expresses that there is a match of the Post correspon-
dence system. If truth of the conjunction of this formula together with the definining
formulae ofConc andPost-Chain was decidable in the given RSRL-interpretation, we
had a method for solving Post correspondence problems.

4 Chainless RSRL is in PTIME

The uncomputability result of the previous section relies on the existence of chains.
It is therefore natural to ask what complexity result can be obtained when leaving out
chains. We can show that if a class of finite structures is definable in chainless RSRL,
then it is decidable by a deterministic Turing machine in a time that is polynomial in
the size of the input structures. In this section, we follow clos8lyChapter 6. Let

K be a class of finite RSRL-interpretations. We whktee RSRL if K is axiomatisable

in RSRL. Axiomatisability in a description logic is to be read as follows. All those
structures are axiomatised for which the defining formula is true, in other words has
the whole carrier as denotation.

Let K be a class of finite interpretations abMia Turing machine.M acceptK if
M accepts exactly those finite interpretations that li&inWe defineK is in PTIME
(“deterministic polynomial time”) iff there exists a deterministic Turing macHifhe
and a polynomiap € IN[x] such thatM acceptK andM is p time-bounded.

We will now take RSRL-interpretations as inputs to Turing machines. We consider
only finite interpretations, infinite ones cannot be input to a machinel beta finite
interpretation with|l| = n. By passing to an isomorphic copy we can and always
will assume that the carrigy; = {0,1,...,n— 1}, an initial sequence of the natural
numbers.

The machine has input tapes and work tapes, all infinitely extending to the right. The
input tapes are the universe tape, the sort tape, a feature tape for each feature and a

10

relation tape for each relation. The universe tape containgijashsecutive 1, so it
looks like this

a 1 1 1 0 0

-1 0 1 n-1 n n+1

The sort tape contains the sort for each element. The inscription of t=ely iff
S(i) = o and the rest of the tape is filled with zeros.

Features and relations are both coded in the same way, features being special types of
binary relations. To code relatidR let R ber-ary, that isRC {0,...,n—1}". For

j <n', let|j|, be thej-th r-tuple in the lexicographic ordering ¢D,...,n—1}"; in

other words, look at the uniqueadic representation of j,

j=ji-nt4jon 24 +j_1-n+jwitho<ji<n,

and setj|r = (j1,---, jr). Then the tape coding has the inscription
a ag a1 a ag an_1 0
-1 0 1 2 3 n"—1 n'

wherea; = 1iff R|j|, anda; = 0iff not R|j|.

Formulae may contain free variables. The values of these variables are determined
by assignment functions. So, in order to compute on structures we would need to
code assignment functions, too. Instead, we look at a variant of RSRL which allows
for individual constants. This obviously does not extend the expressive power of the
language, since every constant can be replaced by a free variable. We will do just the
opposite and replace every free variable byesavconstant in an extended signature
and fix the denotation of the constant to be exacty the element that is the denotation of
the variable it replaces. This way, we need not code assignment functions. For every
constant, there is an input tape. Since the denotation of a constant is a numlibe
constant is coded by the binary representation of that number.

The machine also possesses several work tapes. We define the first work tape to be
the output tape. That is to say, if the machine halts, the first work tape contains the
information which elements are in the denotation of the forngul&o, thei-the cell

of the tape contains a 1 iffc D(¢) and a 0 otherwise. All other cells are padded with

0’s.

We want to show that for any sentence of RSRL the dkasd ist finite models is in
PTIME. We even show that there is a machihastrongly witnessingk € PTIME, that

is,

e M acceptK;

e for any interpretationl every run ofM, started withl stops; in particularM
decide<;

11

o for any interpretatior every run ofM satisfies the polynomial time bound.

Theorem 15 LetK be a class of finite interpretations of chainless RSRK.4f RSRL
thenK € PTIME.

Proof. The proof proceeds by induction on the axiomatising forngula

Let ¢ be atomic. It can have three different fornfigc,, ..., ¢;) for somer-ary relation
R; or t; =~ to with termsty,ty; ort ~ ¢ with termt and sorto. In the first case, we
compute the numbdrrepresented byc;, ..., ¢) in n-ary notation and then look up
thel-the cell of the input tape foR. If it contains a 1, a 1 is written onto the finst
cells of the first work tape. If it contains a 0, a 0 is written onto the firsells of the
first work tape. Sincéis a polynome oven it can be computed in polynomial time.

In the second case we have to compute the denotation of the tietpnfor each ele-
ment0 <i < n. For each of the two terms we use a work tape containing the denotation
of the term application ontocomputed so far in binary notation. For the first tegm
the initial inscription of its work tape is iff t; starts with: as leftmost symbol, or the
value of the constart, as given from the input tape for that constantgifis the left-
most symbol. After initialisation, for each featufeve look up the result of applying

f to the element on the work tape. Even thougis represented as a relation, we find
that value by checking ifj,k) € f for eachO < k < n. Sincef is functional, for at
most onek there is(j,k) € f. If there is onek is written onto the work tape and we
proceed with the next feature @af If there is none, this means the tetpis undefined
oni. Thus we write & onto thei’s cell of the output tape and proceed with 1.
Analogously we calculate the applicationtpfontoi. Finally we compare the values
of the two work tapes. If they are the same number, we writesato thei’s cell of the
output tape. If the numbers are different, we inscrille &hen we proceed with+- 1.
Initialising a work tape is logarithmic in. Application of a feature function is cubic
in n. Hence the denotation of the formula can be computed in polynomial time.

The third case is somewhat similar to the second. For 8ach< n, we calculate the
denotation of ternh exactly as described in the caset i§ undefined om, we just note

a 0 on thd’s cell of the output tape. Otherwise we get to an elemneahd check now
them's cell of the sort tape to see if it agrees withIf so, we write a 1 on thés cell

of the output tape, if not, we write a 0. Then we proceed WwitHL.

Initialising a work tape is logarithmic in. Application of a feature function is cubic in

n. Checking a sort is linear in. Hence the denotation of the formula can be computed
in polynomial time.

Let ¢ be non-atomic. Ith = -, then there is by induction hypothesis a machine that
computes) in polynomial time. We take this machine and add a step at the end. In
this step, the output on the first work tape is reversed by replacing on the €iedis
every 1 by a 0 and vice versa. This step is clearly linear. ithus the machine fap

isin PTIME.

Let = Y Vv x. By induction hypothesis there are PTIME-machihgg and M, for

g andx. A machineMy for ¢ is constructed by runninlyly and copying the result

to a work tape, runningyly and copying the result onto another work tape and finally
reading the results on the work tapes cell by cell and writing a 1 on the first work tape

12

whenever there is a 1 on one of the two work tapes and a 0 otherwise, a step, which is
aparently linear im. ThusM, is in PTIME.

Let $ = Y AX. By induction hypothesis there are PTIME-machihgg and M, for

(andx. A machineMy for ¢ is constructed by runnintyly, and copying the result

to a work tape, runnindyly and copying the result onto another work tape and finally
reading the results on the work tapes cell by cell and writing a 1 on the first work tape
whenever there is a 1 on both of the two work tapes and a 0 otherwise, a step, which is
aparently linear im. ThusMy is in PTIME.

Let ¢ = IxP. Remember thaD(IxP) = {0 <i<n|3j<n:(i,j) € Coandi €
D(Wi/™)}. A machineMy for ¢ works in two steps. In a first step, it computes the
components for every element of the carrier. We give here a polynomial algorithm
that can easily be used to define a machine. The binary relation Comp&@efts
{0,1,...,n—1}? is initialised by setting(i,i) € Cofor all 0 <i < n. We need one
additional variablenew

Set new = false
Repeat
For i := 0 to n-1
For j := 0 to n-1
If Co(i,)) then
For k :== 0 to n-1
For all features F
If F(j,k) and not Cof(i,k) then
Set Co(i,k) := true
Set new = true
Until not new

SinceCoC {0,1,...,n—1}? andCo grows monotone in each run of the repeat loop,
the repeat loop terminates after at moststeps. Therefore the complexity of the
algorithm isO(n°). The incarnation as a machine is even worse, because looking up
and writing to a cell of the representation of a binary relation — aCarand the
features — is quadratic in. Hence the complexity for the machine@n’), bad but

still polynomial, as desired.

It is of course clear that the Component matrix needs to be computed only once, even
if the formula contains several quantifiers.

The second step consists in calculating the denot&liohdxy. By induction hypoth-
esis there is for ever§ < j < na PTIME-machiné;« for g where the variable is

replaced by the constaint Again we provide a pseudo-code algorithinis initialised

by setting everything to false, analog to erasing the first work tape.

For i := 0 to n-1
Setj=0
Set found := false
While (j < n and not found)
If Cai,j) then

13

Run Mw,-/x
If i € Output(My,x) then
Set D(i) = true
Set found := true
Set j := j+1

The algrothim has the complexitp(n?) multiplied by the complexity oMy. Since
My is in PTIME by induction hypothesis, it follows thity is in PTIME, too.

Let ¢ = Vx. This case is analog to the existential quantification case. [

The denotation of an RSRL-formula is the set of those elements of the universe for
which the formula holds true. Even if the formula is a sentence and it turns out that it
is true for all elements, it can well be the case that subformulae have a denotation that
differs from the whole universe and the empty set. Therefore it is necessary to store
intermediate results of subformulae. And this cannot be done with only logarithmic
space available. It is therefore very likely that PTIME is the least upper bound.

5 Classical Logic and Chainless RSRL

It is well known that functions and constants of first-order predicate logic can be coded
by relations and hence are not really necessary. Thus we restrict ourselves here to the
purely relational variant of first-order predicate logic. We abbrivate relational first
order predicate logic by RFOL. By Definitio8, every formula of RFOL is a well-
formed formula of RSRL.

Let 9t = (U, R) be a relational first-oder model with denumerable universed rela-
tionsR. The denumerability is no restriction due to théwenheim-Skolem-Theorem
on first-order predicate logic. We define a corresponding RSRL-interpretigfion
The signature of)t contains just the relation symboRel. The signature ofgy
consists of a singe soud, two featuresf and b, and the relationRel %, =
({o0},0,{0},{f,b},{(o, f,0),(0,b,0)},Rel). Both featuresf andb are appropriate
for sorto. The interpretatiomy; = (U, S F, R) inherits the universe and the relations
Rfrom 9. For allue U : S(u) = 0. SinceU is denumerable, letnum: IN — U be an
enumeration ob). DefineF as follows. For ali € IN : (enunti),enunti +1)) € F(f)
and(enunti+1),enunti)) € F(b). Featuref stands for forwardp for backward. Ob-
viously, for eachu,v € U such thaenunt!(u) < enunt(v) there is anf-path fromu
to v and ab-path fromv to u. Hence for eachi € U the componentSO}Jim =U.

Lemma 16 Let¢ be aformulain RFOL. LeDt be a first-order model anda variable
assignment such thé®t,a) = ¢. Then(lgy,a) = ¢.

Proof. By structural induction. For convenience, we assume that only atomic formulae
are negated inp.

14

For the base, if9t,a) = x =y thena(x) = a(y), and hence by Definitiong and11
D2 (x=y)=U or (Iy;,a) Ex=Yy.

If (971, @) [= x# ythena(x) # a(y), and hence by Definition&and11Df (x#Y) =

or (lon,8) =X#Y.

If (9,a) F Q(x1,...%) then(a(xy),...,a(X)) € R(Q), and again by Definitiong
and11Df (Q(X1,...X)) =U or (I, a) F Q(Xa,.. . X).

If (OM,a) F —Q(X1,...x) then (a(x1),...,a(x)) ¢ R(Q), and again by Defini-
tions7 and11 D} (Q(x1,...X)) = 0, and Df (—Q(xa,...Xc)) = U or (loy,a) =
—Q(X1,. .- Xk)-

For the step, if91,a) = WA X, then(9M,a) = Y and (9, a) = X. By induction hy-
pothesis(loy,a) = W and(lgy,a) = X. Hence by Definitiorll, (lyy,a) = WAX.

If (M,a) EwVvy, then(M,a) = Y or (M,a) = x. By induction hypothesis,

(loy,a) = W or (lgy,a) = X. Hence by Definitiorld, (logy,a) = WV X.
If (M,a) = VxP andx is free iny — the case of empty quantification is obvious —,
then for allu € U : (9, aju/x]) = Y. Thus(lor,aju/x]) = P by induction hypothesis.

Thus forallue U : D|£:/X] (W) =U.
We know for allve U : Coj = U.

LetveU. Thenforalluc U :ve D} [U/X](l]J).
Thus forallue Coy, :veD [U/X](LD).

Hence{ve U |VYue Co) :ve Da[”/x](lp)} =U.
HenceD} (vxy) =U, or (la,a) h Xy,

If (90,a) = IxY andx is free iny then there is a € U such thatdt,afu/x]) = @
Thus(loy,alu/x]) = W by induction hypothesis.

Hence thereisae U : D [U/X](QJ) =U.
Letve U, thenue Col =U andve Da[u/"](lp)

Thus{veU |3ueCoj :veD, u/X()} =U, thusDf_(3xy) =
thus(lgn, a) = IxyP. [

Definition 17 An RSRL-interpretation is calledfully connectedif the components
for every element of the carrier is the whole carrier, i.e., fouallU : Co}' = U.

The RSRL-interpretation is fully connected in the sense that for each two elements of
the carrier there exists a feature path from one to the other.

Corollary 18 If an RFOL-formula has a classical model, it has a fully connected
RSRL-model.

In RSRL, one guantifier can be defined by means of the other, just as can be in the
classical case.

Lemma 19 For every RSRL-interpretation and every variable assignmers
Di(—~3x—¢) = D (Vx¢).

15

Proof.

D?(_\HX—\(I))

=U\{ueU | thereis a € Co withu € D?[V/X](ﬂq))}

={ueU | thereisnov € Co}' withu € Df‘["/X](ﬁq))}

={ueU | forallveCoj':u¢ D‘;"["/X](ﬁq))}

={ueU | forallve Coj':u¢ (U \D?[V/X](q)))}

={ueU| forallve Coj':ue Df‘["/"](q))}

= Di(vx9). .

Let ¢ be a formula of RFOL. We now suppogédias a fully connected model in RSRL

and show it has a model in classical relational first order logic. To get a classical
relational model out of an RSRL-model is quite simple: We just forget about the sorts,
features and the sort hierarchy. All that remains is the universe and the relations. More
precisely let = (U,S F,R). Definedt = (U,R).

Lemma 20 Let ¢ be a formula or RFOL. Letl be a fully connected RSRL-
interpretation anda a variable assignment such thdta) = ¢. Then(91,,a) = ¢.

Proof. This lemma is again proven by induction.

For the base, letl,a) =x=y. ThusD}(x=y) =U. Thusa(x) = a(y). Thus
(M, @) =x=y.

Let (I,a) = Q(X1,...,%). ThusD(Q(Xy,...,%)) =U. Thus(a(x),...,a(x)) €
R(Q). Thus(9y,a) = Q(xq,. .., X).

For the step, lefl,a) = PAX. Then(l,a) = Y and(l,a) = x. By induction hypothesis,
Then(9,a) = g and(9,a) = X. Hence(My,a) = WAX.

Let (I,a) =y VX. Then(l,a) =y or (l,a) = X. By induction hypothesis, Then
(y,a) = Yor (My,a) = X. Hence(Mty,a) =PV x.

Let (I,a) = —y. ThusD{(y) = 0. By induction hypothesisp is false in9t; with
assignmend. And hencegny,a) = .

Finally, let (I,a) = ¥xw. Thus{ueU | forallve Cd': ue DY (y)} =U. Thus
Yue Uw e Ca': ue DM (y). Since the RSRL-model is fully connected,
U e U :ue DX (). Thereforevv € Uvu e U : uc D™ (y). Hencewv e U :
DM (p) =U. Thusw e U : (I,alv/X]) = w. By induction hypothesisyv € U :
(O, alv/x]) = . Thus(My,a) = Vxy.]

Theorem 21 Let¢ be a sentence in RFOL. Thénhas a model in RFOL iff it has a
fully connected model in RSRL.

Acknowledgements

I would like to thank Frank Richter, Manfred Sailer, and Uw&mviich for helpful
discussions.

16

References

[1] Alonso Church. A Note on the Entscheidungsprobledournal of Symbolic

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Logic, 1(40-41), 1936. Correction ibid. P. 101-102.

Bruno Courcelle. Graph Rewriting, An Algebraic and Logic Approach. In Jan
van Leeuwen, editotdandbook of Theoretical Computer Sciengelume B,
chapter 5, pages 193-242. Elsevier, 1990.

Heinz-Dieter Ebbinghaus an@éwdy Flum.Finite Model Theory Springer-Verlag,
1995.

Neil Immerman. Expressibility as a Complexity Measure: Results and Direc-
tions. InSecond Structure in Complexity Theory Conferemases 194—-202.
Computer Soc. of the IEEE,, 1987.

Stephan Kepser. A Satisfiability Algorithm for a Typed Feature Logic. Master’s
thesis, Seminartir Sprachwissenschaft, University ofilingen, Arbeitspapiere
des SFB 340, Bericht Nr. 60, 1994.

Paul John King.A Logical Formalism for Head-Driven Phrase Struture Gram-
mar. PhD thesis, University of Manchester, 1989.

Paul John King. Towards Truth in HPSG. In Valia Kordoni, edifBiabingen
Studies in Head-Driven Phrase Structure Grammaniume 2, pages 301-352.
Arbeitspapiere des SFB 340, Bericht Nr. 132pbihgen, Germany, 1999.

Paul John King, Kiril lvanov Simov, and Bjgrn Aldag. The Complexity of
Modellability in Finite and Computable Signatures of a Constraint Logic for
Head-Driven Phrase Structure Grammadbournal of Logic, Language and In-
formation 8(1):83-110, 1999.

Carl Pollard and Ivan A. Sagnformation Based Syntax and Semantics, Vol. 1:
FundamentalsNumber 13 in Lecture Notes. CSLI, 1987.

Carl Pollard and Ivan A. Sadgdead-Driven Phrase Structure Grammagniver-
sity of Chicago Press, 1994.

Emil Post. A Variant of a Recursively Unsolvable ProbleBulletin of the AMS
52:264-268, 1946.

Frank RichterA Mathematical Formalism for Linguistic Theories with an Appli-
cation in Head-Driven Phrase Structure Gramm&hD thesis, SfS, Universit
Tubingen, 2000.

Frank Richter, Manfred Sailer, and Gerald Penn. A Formal Interpretation of
Relations and Quantification in HPSG. In Gosse Bouma, Erhard Hinrichs, Geert-
Jan M. Kruijff, and Richard T. Oehrle, editor§onstraints and Resources in
Natural Language Syntax and Semantipages 281-298. CSLI Publications,
1999.

17

