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10.1 Introduction

In recent years large amounts of electronic texts have become available providing
a new base for empirical studies in linguistics and offering a chance to linguists
to compare their theories with large amounts of utterances from “the real world”.
While tagging with morphosyntactic categories has become a standard for almost
all corpora, more and more of them are nowadays annotated with refined syntactic
information. Examples are the Penn Treebank (Marcus et al., 1993) for American
English annotated at the University of Pennsylvania, the French treebank (Abeillé
and Clément, 1999) developed in Paris, the NEGRA Corpus (Brants et al., 1999)
for German annotated at the University of Saarbrücken, the Tübingen Treebanks
(Hinrichs et al., 2000) for Japanese, German and English from the University of
Tübingen, and the German newspaper corpus TIGER (Brants et al., 2002). To
make these rich syntactic annotations accessible for linguists the development of
powerful query tools is an obvious need and has become an important task in com-
putational linguistics.

Consequently, a number of query tools for syntactically annotated corpora have
been developed in recent times. Amongst the most important ones are Cor-
pusSearch (Randall, 2000), fsq (Kepser, 2003), ICECUP III (Wallis and Nelson,
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2000), TGrep2 (Rohde, 2001), TIGERsearch (König and Lezius, 2000), and VIQ-
TORYA (Kallmeyer and Steiner, 2002). All of them face a fundamental problem
in the design of a query system namely the definition of the expressive power of
the query language. The problem lies in balancing out user demands for a high
expressive power on the one hand and complexity problems on the other that may
arise when query languages become quite powerful. The difficulty of this prob-
lem grows with the fact that the so-called treebanks to be queried are very often
not just collections of proper trees. Demands of linguists have introduced addi-
tional features such as crossing branches and secondary relations. In consequence,
some treebanks have more or less become collections of finite structures. Most of
the above mentioned query tools (namely CorpusSearch, ICECUP III, TGrep2, and
VIQTORYA) ignore this additional challenge completely, they are designed to query
trees only. Still, they typically offer query languages of limited expressive power
with the existential fragment of first-order logic being a kind of upper bound. A
notable exception is fsq, which was particularly developed to query arbitrary finite
first-order structures with full first-order logic. The disadvantage of fsq is the com-
plexity of the implemented algorithm: Evaluation time of a query is polynomial in
the size of the treebank. The size of the lead polynome is the quantifier depth of
the query. Hence the evaluation of complex queries can take quite a long time.

Building on insights from theoretical informatics we show here that it is possible
to query linguistic treebanks with a monadic second-order logic, powerful query
language, in time linear in the size of the treebank.

It is known that the evaluation of a first-order sentence on a finite structure with a
carrier of just two elements is already PSPACE-complete. To differentiate between
the contribution of the logic or query language on the one hand and the contribution
of the size of the finite structure on the other, Vardi (1982) introduced the notions of
query complexity and data complexity. The general situation in querying linguis-
tic treebanks is such that treebanks are large and still growing huger while most
queries are relatively small. This justifies the concentration on data complexity, as
we do it here.

10.2 The Query Language

The query language we propose is monadic second-order logic (MSO). It is the ex-
tension of first-order logic by set variables. As stated above, “trees” in a treebank
may contain unconnected subparts and directed as well as undirected secondary
edges. We therefore see a tree in a treebank as a finite relational structure. Tech-
nically, we follow the exposition by Arnborg, Lagergren, and Seese (1991). The
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signature of a tree consists of the unary predicate symbols V � E � D � P1 ��������� Pp for
some p ��� and of the three binary predicates R1 � R2 � R3 with the intended mean-
ing that

	 V designates the set of vertices,
	 E designates the set of undirected edges,
	 D designates the set of directed edges,
	 R1 
 a � b � holds if and only if a is a vertex incident with the edge b,
	 R2 
 a � b � holds if and only if a is the source or origin of the directed edge b,
	 R3 
 a � b � holds if and only if a is the target or end point of the directed edge

b,
	 P1 ��������� Pp are (linguistic) labels of vertices and edges.

Let V1 ��
 x � y � z � x1 � x2 � x3 ��������� and V2 ��
 X � Y � Z � X1 � X2 � X3 ��������� be two disjoint
denumerable sets of individual variables (vertices or edges) and set variables.
We use lower case letters for individual variables and upper case letters for set
variables. The syntax of MSO contains two binary logical relations, namely
� (equality) and � (membership). Formulae are defined as follows. For all
x � y � V1 � X � V2 � 1 � j � p: V 
 x ��� E 
 x ��� D 
 x ��� Pj 
 x ��� R1 
 x � y ��� R2 
 x � y ��� R3 
 x � y ��� x �
y � x � X are atomic formulae. Let ϕ and ψ be formulae. Then � ϕ � ϕ � ψ � ϕ � ψ � ϕ �
ψ ��� xϕ ��� xϕ ��� Xϕ ��� Xϕ are formulae.

A tree is a a finite relational structure T � 
 U � V � E � D � R1 � R2 � R3 � P1 ��������� Pp � where
U is a finite nonempty set of vertices and edges, V � E � D are unary predicates of
vertices and (undirected and directed) edges, P1 ������� Pp are unary predicates, and
R1 � R2 � R3 are binary predicates. We call such a structure also a graph. The size of
the graph is �U � , the number of vertices and edges of the graph.

The semantics of MSO over theses structures is an extension of the classical first-
order logic semantics. A variable assignment a now consists of two functions
a1 : V1 � U and a2 : V2 � ℘
 U � . Formulae not involving set variables have the
same semantics as in the first-order case. The formula x � X is true iff a 
 x ��� a 
 X � .
For set quantification, � Xϕ is true in 
 T � a � iff there is a W � U such that ϕ is true
in 
 T � a �X  W !�� where a �X  W ! is a variable assignment that is equal to a except
that it assigns W to X . The formula � Xϕ is true in 
 T � a � iff for all W � U the
formula ϕ is true in 
 T � a �X  W !�� .
Not every finite structure of the given signature is suitable to designate a tree. To
ensure the intended meaning of the predicates some axioms have to be added that
all structures should respect.
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� x V 
 x �"� E 
 x �#� D 
 x � , � x � 
 V 
 x �#� E 
 x ��� ,
� x � 
 E 
 x �#� D 
 x ��� , � x � 
 V 
 x �"� D 
 x ��� ,
� x � y R1 
 x � y ��� 
 V 
 x �#� E 
 y ��� , � x � y R2 
 x � y ��� 
 V 
 x �"� D 
 y ��� ,
� x � y R3 
 x � y ��� 
 V 
 x �#� D 
 y ��� .

The axioms state that the relations V � E and D partition the domain U and that the
left hand side argument of a relation R1 $ 2 $ 3 is always a vertex while the right hand
side is an undirected edge for R1 and a directed edge for R2 $ 3.

A linguistic treebank in our sense is a finite set of finite structures defined as above.
Restricting ourselves to finite treebanks is justified on two grounds. Firstly, any
now or in the future existing treebank is finite. Secondly, querying an infinite
treebank makes no sense since a person posing a query expects an answer at least
in finite time.

10.3 Linear Time Complexity of MSO Queries

In the general case, the data complexity of MSO queries on arbitrary classes of
finite structures is PSPACE (see, e.g., Ebbinghaus and Flum (1995)). Thus there
is little hope to find efficient algorithms for MSO queries on arbitrary classes of
finite structures. But there is a class of structures for which a linear-time algorithm
exists. As was shown independently by Arnborg, Lagergren, and Seese (1991) and
by Courcelle (1990a,b, 1992), the class of graphs with bounded treewidth possesses
such an algorithm.

The notion of treewidth was introduced by Robertson and Seymour (1986) as a way
to measure how close to a tree a graph is. Bodlaender (1993) provided a general
introduction that the interested reader is referred to.

Definition 1 A tree decomposition of a graph 
 A � V � E � D � R1 � R2 � R3 � P1 ��������� Pp � is
a pair (T,S), where T is a tree and S is a family of sets indexed by the vertices of T
such that

1. % Xt & S Xt � A.

2. For all c � A such that E 
 c � there is a unique Xt � S such that c � Xt , and if
a � A satisfies R1 
 a � c � then a � Xt .

3. For all c � A such that D 
 c � there is a unique Xt � S such that c � Xt , and if
a � A satisfies R2 
 a � c � or R3 
 a � c � then a � Xt .

4. For all a � A the subgraph of T induced by 
 t � a � Xt � is connected.
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The width of such a decomposition is maxXt & S � 
 a � a � Xt � V 
 a ���'�)( 1, i.e., the
largest number of vertices in a single set of the decomposition minus 1.
A graph G is of treewidth k if and only if the smallest width of a tree decomposition
of G is k.

There are different ways in which a graph can divert from a tree. A clique, for
example, is a structure which is kind of an opposite of a tree. Hence it is simple to
see that the size of the largest clique is a lower bound of the treewidth of a graph.
An important property of a tree is that every pair of vertices of a tree is connected
by a unique path. A graph in which many pairs of vertices are connected by many
different independent paths is therefore also kind of an opposite of a tree. The
largest number of independent paths between two vertices gives an upper bound
for the treewidth.

Proposition 1 Arnborg et al. (1991); Courcelle (1990a,b, 1992) For every class K
of graphs of universally bounded treewidth, every MSO sentence can be decided in
time linear in the size of G for G � K.

A fortiori, every finite set of graphs has a bounded treewidth.

Corollary 2 Therefore MSO queries on linguistic treebank can be evaluated in
linear time in the size of the treebank.

The above results were enhanced by several authors showing that MSO can be
extended by cardinality predicates or simple counting. The perhaps most general
result is given by Courcelle and Mosbah (1993) who add a certain type of evalua-
tion functions to MSO.

The core of these results is achieved by a reduction to classical formal language the-
ory. Using a method of semantic interpretation of one structure in another proposed
by Rabin (1977), Arnborg et al. (1991), and Courcelle (1990a,b, 1992) provide a
method for interpreting finite graphs of bounded treewidth by finite trees. MSO
sentences can then be evaluated over these trees using tree automata techniques
proposed by Doner (1970) and Thatcher and Wright (1968).

A bit more detailed, Arnborg, Lagergren, and Seese (1991) provide a general con-
struction by which an MSO sentence S on graphs is translated into an MSO sen-
tence τ 
 S � on binary trees. This construction also transforms a general labelled
graph G with a suitable tree decomposition into a labelled binary tree T 
 G � in time
linear in the number of vertices of G in such a way that S holds in G if and only if
τ 
 S � holds in T 
 G � . The step of the computation of a suitable tree decomposition
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can be done also in linear time on graphs with bounded treewidth, as was shown
by Bodlaender (1996).1 After the application of this transformation, classical tree
automata techniques (Doner, 1970; Thatcher and Wright, 1968) can be applied.

The computation of a tree decomposition, although possible in time linear in the
size of graph, is an expensive step. In a recent analysis of the original algorithm by
Bodlaender (1996), Hagerup (2002) presents a variant which works three orders of
magnitude faster. Still the algorithm is exponential in the square of the treewidth.
This seems to indicate that it can hardly be used in practice. But there are two
important facts to keep in mind that make this approach feasible. Firstly, most
trees in current treebanks have a small treewidth. The capabilities of secondary
relations are only sparsely used by annotators. To give an extreme example of
how rarely secondary edges are used, consider the German Tübingen Treebank
(Hinrichs et al., 2000), in which more than 99.9% of the trees have treewidth 1, the
small rest having treewidth 2. Secondly, and more importantly, the computation
of a tree decomposition has to be done only once. It is a part of the preprocessing
step that transforms tree-like graphs of the input treebank into proper trees suitable
for the application of tree automata techniques. Obviously, such a preprocessing is
performed once and off-line. As such, it is not a relevant factor in the actual query
response time, i.e., the time from the posing of a query till the presentation of the
answer. Therefore, longer preprocessing times are indeed tolerable.

10.4 On the Expressive Power of MSO Queries

As stated in the introduction, the development of query systems that employ pow-
erful query languages is a relatively new one. An important reason therefore is
certainly the fact that corpora with rich syntactic annotations came to exist only
recently. And only if there is a rich structure to query it makes sense to provide
powerful query languages.

On the other hand, there is now a growing need for powerful query languages for
the following reasons. Suppose a linguist is interested in finding a particular syn-
tactic phenomenon in a large treebank. In most query languages it is a trivial task to
write a query the answer set to which will contain all instances of the phenomenon
that can be found in the corpus. Just write a query which is rather general. The an-
swer set will be big and certainly contain what the linguist is looking for. But it will
mainly consists of undesirable “garbage”, trees that do not exhibit the phenomenon
sought. Hence, the real task in querying is not so much to produce an answer set

1Remarkably, Bodlaender found his result after the publication of the works by Arnborg et al.
(1991) and Courcelle (1990a,b).
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Figure 10.1: A subject-free clause from the German Tübingen Treebank

that contains instances of what you are searching for. The task is rather to weed
out the garbage, to keep answer sets as small as possible. Looking at things this
way, a query is a kind of a filter for the corpus. And in order to retain small answer
sets it is necessary to make that filter strong. A linguist should be able to spell out
as exactly as possible the phenomenon he is looking for. And that requires power-
ful query languages. Treebanks have already gained quite a size, e.g., the German
Tübingen Treebank contains more than 38.000 trees. There is hardly any chance
to manually check big answer sets any more.

Let us illustrate these arguments by linguistically motivated examples. Suppose
we are looking for trees in a German or English treebank where a clause lacks the
subject. It is known that Germanic languages require the subject to be lexically
realised under normal circumstances. It is therefore interesting to see whether
there are any exceptions from this rule, and if, what they look like. An example of
a clause where the subject is missing can be seen in Figure 10.1, which displays
a tree from the German Tübingen Treebank. It reads is the twenty fourth of July.
Without going into details of the annotation we note that the grey shaded ellipses
represent part-of-speech tags or syntactic categories and the grey shaded rectangles
represent grammatical functions or edge labels.

In order to find trees that lack the subject, we have to find a clause node, which is a
node of category (POS tag) SIMPX below which there is no subject. In this treebank,
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a subject is a node of grammatical function ON which stands for Object in the
Nominative. The treebank contains a parent relation to indicate the tree structure.
In our queries, we will use the dominance relation, the reflexive transitive closure
of the parent relation, and designate it by the relation symbol *+* . A discussion
of transitive closures in queries follows the present illustration of searching for
subject-free clause.

We can now pose the following query:

� xSIMPX 
 x �"�,� y 
�
 x *+* y ���-� ON 
 y ���
The formula reads “There is a clause node (node of category SIMPX) such that no
node below it is a subject node (node of function ON (Object in the Nominative)).”

An example result is the tree in Figure 10.1. Another result from the same corpus
would be “aber gut, wir können ja mal fragen, was gegeben wird.” (All right,
we can ask, what’s on play.) where there is no subject in the German subordinate
clause. If one is interested in finding only those trees where the subject is lacking
in a subordinate clause, the above query has to be extended to

� x � y SIMPX 
 x �"� SIMPX 
 y �"� 
 x *.* y �"� 
 x /� y �#� 
 � z � 
�
 y *.* z �#� ON 
 z �����
“There are two different clause nodes, one dominating the other, and no node below
the lower clause node is a subject node.”

This is a query of quantifier depth 3 (number of deepest nestings of quantifiers). On
second thought one can see that this query is still too simple to find all subordinate
clauses without subject. It does not reflect the possibility of having a subordinate
clause with subject as a subclause of a subordinate clause without subject. Here is
a query that does:

� x � y SIMPX 
 x �"� SIMPX 
 y �#� 
 x *+* y �"� 
 x /� y �0�

 � z ON 
 z �1� 
 � 
 y *.* z ���

� w SIMPX 
 w �"� 
 y *+* w �"� 
 y /� w �"� 
 w *+* z �����
“There are two different clause nodes, one dominating the other, and every subject
node is either not dominated by the lower clause node or there is a further clause
node intervening.”

This query is even of quantifier depth 4. Another complicated query must be used if
we want to find all trees in which the main clause lacks the subject, but subordinate
clauses may have one. The query looks like this:

� x SIMPX 
 x �#� 
 � y SIMPX 
 y ��� 
 x *.* y � x /� y ���0�

 � y 
�
 x *.* y �#� ON 
 y �����

� z 
 SIMPX 
 z �#� 
 x *.* z �#� 
 x /� y �#� 
 z *+* y �����
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“There is a highest clause node such that for every subject node dominated by it
there is a second clause node intervening.”

These examples show that once a linguist is interested in more advanced phenom-
ena a powerful query language is necessary to specify as closely as possible what
it is that the linguist seeks.

One of the advantages of MSO as a query languages is the fact, shown by Cour-
celle (1990a), that the transitive closure of any MSO-definable relation is also
MSO-definable. Transitive closures play an important role in formal definitions
of linguistic structures. Although the term is rarely literally used, many definitions
contain it tacitly. One such example is the definition of dominance as given in the
above discussion. Another example is the lexical head of a phrase. Here we look
at the transitive closure of the head-daughter relation. Any notion of government,
c-command or barriers contains indirectly a transitive closure, as well as notions of
maximal or minimal categories. Since it is unforeseeable which particular variant
of these notions a user querying a corpus has in mind, it is not a feasible approach
to try to precompile these transitive closures during the preprocessing of the cor-
pus. To provide a query language that allows the definition of transitive closures
seems to be the more promising way.

There is a second field of applications of powerful queries, namely in the develop-
ment of treebanks. As was pointed out by Dickinson and Meurers (2003), even tree-
banks that are annotated by hand and not automatically can contain quite a number
of misannotations and inconsistencies. To enhance the quality of the treebank an
annotator can check wether his annotations are consistant by defining the environ-
ment of an annotation, querying the treebank with this definition, and inspecting if
the annotations in the answer set are the way they should be. The expressive power
of the query language is important for an annotator because fine-grained annota-
tions are typically very sensitive to environments, and thus environments should be
definable rather precisely.

10.5 Conclusion

In this paper we showed that linguistic treebanks can be queried with a very pow-
erful query language, namely monadic second-order logic, in time linear in the size
of the treebanks. We thus give an argument for that at least on a theoretical level the
question of a choice of a query language for treebanks can be settled. We hardly
expect the arise of a need of an even more powerful query language. And the fact
that a large part of costly computations can be done in an offline preprocessing step
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to be performed only once lets us believe that the described approach is practically
feasible.

It would certainly be nice, if one would be able to show that the types of finite
structures one can find in linguistic treebanks are such that they have a bounded
treewidth by their nature. But at least some of the corpus formats currently being
used do not as such warrant a bound for the treewidth of its instances. A simple ex-
ample is the addition of free indexation to syntax trees in GB theory such as coin-
dexing anaphora and antecedent or moved constituents and their traces. If there
is no bound on the number of coindexations, the structures have an unbounded
treewidth. An inspection of some of the available treebanks reveals on the other
hand, that typically only a subset of the capabilities provided by the corpus formal-
ism is actually in use. We thus think it is an intersting research goal to see if one
can find an abstract characterisation of linguistic trees as found in treebanks that is
general enough to cover most existing corpora but also that specific that it provides
boundedness of the treewidth of its instance structures.
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