
Electronic Notes in Theoretical Computer Science 53 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume53.html 17 pages

On the Complexity of RSRL

Stephan Kepser 1

SFB 441, University of Tübingen, Germany
kepser@sfs.uni-tuebingen.de

Abstract

In this paper we present a computability and a complexity result on Relational
Speciate Reentrant Logic (RSRL). RSRL is a description logic designed to formalise
the linguistic framework and theory Head-Driven Phrase Structure Grammar. We
show here that given an RSRL-formula and a finite RSRL-interpretation it is in
general not decidable if the formula is true in the given interpretation by reduction
to Post Correspondence Problems. For so-called chainless RSRL, a semantically
weaker version in which the expressive power of RSRL is significantly reduced, we
show that if a class of finite structures is definable in chainless RSRL it is decidable
by a Turing machine polynomially time bounded in the size of the input structures.

1 Introduction

Relational Speciate Reentrant Logic (henceforce RSRL, [11,12]) is a
description logic designed by Frank Richter, Manfred Sailer, and Gerald Penn
to formalise Head-Driven Phrase Structure Grammar [8,9]. HPSG is
one of the leading paradigms in current linguistic research. It is in particular
characterised by a high degree of formalisation and in opposite to its con-
tender GB non-transformational. RSRL is based on Speciate Reentrant
Logic [5,6], a feature logic for HPSG developed by King. RSRL, as SRL, is
a description logic, it is designed to describe (linguistic) entities and not to
talk about truth. A description of this logic can be true or false of an object.
Therefore the denotation of such a description are those objects on which the
description fits or for which the description is true. A linguistic entity is de-
scribed mainly by sorts and features. Sorts describe the type of the entity,
such as word or phrase or subcat ; they act as unary relations partitioning
the domain of discourse. Features describe sub-parts of entities such as the
phon (phonetic/phonologic) or synsem (syntactic and semantic) sub-parts of

1 This research is supported by a DFG-grant (SFB 441-01).

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume53.html�

Kepser

a word. The main two extensions of RSRL over SRL is the introduction of ar-
bitrary relations and quantification. Relations and quantification are specific
to RSRL and not classical. Richter [11] argues at length that these extensions
are required to fully formalise the principles of HPSG [9]. Here, we will not
enter into the linguistic discussion. Neither can we explain the design goals
of RSRL. We will rather investigate computational and complexity properties
of RSRL. In doing so we want to contribute to a better understanding of this
feature logic, that is by some people regarded as the logic for HPSG.

The notion of the complexity of a logic stems from descriptive complexity
theory. In principle, classes of finite structures can be defined in (at least)
two different fashions. Classically, classes of structures are defined by logical
axiomatisations. Hence it is the expressive power of the logic that decides
which classes can be defined. Computationally, classes of structures can be
defined by means of the computing devices that can compute if a candidate
structure belongs to the class or if it does not. Hence it is the computational
complexity that decides which classes can be defined. Descriptive complexity
theory bridges between these two approaches by investigating the relationship
between the expressive power of a logic on the one side and the complexity of
a computing machine on the other. So, there are two questions: Given classes
of structures defined in a particular logic, what is the required computational
power to decide these classes? An example answer is that classes of structures
defined in classical first order logic plus transitive closure require LOGSPACE-
bounded non-deterministic Turing machines. And given classes of structures
decided by some computing machine, what is the logic that can define these
classes? Again an example answer is that classes of ordered structures that
can be decided by LOGSPACE-bounded non-deterministic Turing machines
can be axiomatised by first order logic plus transitive closure. Thus on finite
ordered structures first order logic with transitive closure and LOGSPACE-
bounded non-deterministic Turing machines define exactly the same classes of
structures, as Immerman showed [3].

In this paper, we start from classes of finite structures definable in RSRL and
search for the computing device that is required to decide these classes. To
do so, we will systematically distinguish between two types of RSRL: RSRL
as defined by Richter and so-called chainless RSRL, which is a semantically
weaker version of RSRL. Richter introduces the notion of a chain. A chain
is a potentially empty, finite sequence of objects in the denotation domain.
One of the peculiarities of RSRL is the fact that the denotation of a variable
may not only be a single object, but also a chain of objects. In chainless
RSRL, a variable is always assigned to a single object. So, the syntax of
RSRL and chainless RSRL are identical, while the semantics differs in that
the denotation domain of a variable in chainless RSRL is always a single object
of the universe (as is the case in classical logic) while it can be a single object
or a chain of objects in (general) RSRL. Unsurprisingly, the introduction of
chains has quite an impact on the expressiveness and computability of RSRL,

2

Kepser

as we will show. Richter [11] argues that they are necessary to formalise the
meaning of HPSG-principles that contain references to sets or lists like, e.g.,
the Subcategorization Principle.

After a short formal introduction to RSRL in the second section we present the
first main result in the third one by showing that truth of a formula in a finite
RSRL-interpretation is undecidable. Kepser showed in [4] that satisfiability
of an SRL-formula is decidable, while King and Simov [7] proved the stronger
notion of grammaticality of an SRL-formula to be undecidable. It is well
known that satisfiability of classical first order logic is undecidable [1]. On
the other hand, first order logic plus transitive closure is in LOGSPACE, as
Immerman [3] showed. That is to say, given a formula of first-order logic with
transitive closure and a finite first order structure, the complexity to calculate
whether the formula holds true in the given structure is LOGSPACE bounded
by the size of the structure. It turns out that the corresponding question for
RSRL, namely given an RSRL-formula and a finite RSRL-structure, is the
formula true in the structure is in general undecidable. The undecidability
is proven by showing that Post Correspondence Problems can be coded in
RSRL-chains. This result is quite remarkable since it shows that the seemingly
innocent addition of chains is really a one with far reaching consequence.
Checking the truth or falsehood of a formula in a finite structure is amongst
the minimal requirements one can put onto a logic. Also, King and Simov’s
undecidability proof needs infinite structures. We remain in the realm of finite
structures, and the introduction of chains, which are also finite, is motivated
by linguistic needs.

The fourth section shows that chainless RSRL is in PTIME. After we saw the
impact of allowing chains it is natural to ask where does RSRL stand if chains
were removed. One can show that the classes of finite structures definable in
chainless RSRL are decidable by PTIME-bounded Turing machines. To state
that differently, given a Turing machine that represents a chainless RSRL
formula and a finite RSRL-structure as input to the machine, the denotation
of the formula in that structure can be computed in a time polynomial to
the size of the structure. Or taken chainless RSRL as a query language, the
complexity class of evaluating a query in a finite structure is PTIME. This
result is a lot closer to the classical result for first order logic. That we still
end up in a different complexity class is a consequence of the fact that RSRL
is a description logic, as we will argue below.

2 RSRL

RSRL is a logic designed to describe HPSG-feature structures. An HPSG
feature structure is a directed rooted finite hyper graph of a particular kind
with sorts as node labels and features as edge labels. Features are functional.
The distribution of sorts and features is not arbitrary, there are strong co-

3

Kepser

Fig. 1. Structure of the English pronoun she

occurrence restrictions that allow the appearance of certain features only in
the context of certain sorts. An example of how an HPSG feature structure
looks like is given in Figure 1. It is the structure of the English pronoun she
([9], p. 17).

A full introduction to RSRL in its linguistic motivations or design decisions is
far beyond the scope of this paper. This section rather summarises the tech-
nical definitions of RSRL that define its core. It is an excerpt of Chapter 3.1.1
“The Description Language” of [11] where a rich explanation with examples
of all the technical definitions that follow can be found.

Definition 2.1 Σ is a signature iff

Σ is a septuple 〈G,v,S,A,F ,R,AR〉,
〈G,v〉 is a partial order of sorts,

S =

σ ∈ G

∣∣∣∣∣∣
for each σ′ ∈ G,

if σ′ v σ then σ = σ′

, the set of most specific sorts

A is a set of attributes or features,
F is a partial function from the Cartesian product of G and A to G,
for each σ1 ∈ G, for each σ2 ∈ G and for each α ∈ A,

if F〈σ1, α〉 is defined and σ2 v σ1

then F〈σ2, α〉 is defined and F〈σ2, α〉 v F〈σ1, α〉,
R is a finite set of relation symbols, and
AR is a total function from R to IN+, the arities of the relations.

4

Kepser

The partial order 〈G,v〉 of sorts exists mainly for linguistic purposes. The
technically relevant part of it is the set S of its most specific sorts. Therefore,
other than in this section, the partial order will remain unmentioned in our
work. F defines compatibility restrictions between sorts and features. It
enables the linguist to state that only certain sorts and features may co-occur.

Suppose M is a set. M∗ is the set of finite strings over M , including the
empty string. We will refer to it as the set of finite sequences of elements of
M . Similarly, M+ is the set of nonempty finite sequences of elements of M .
For convenience, we will henceforth write M as an abbreviation for M]M∗.

RSRL signatures are interpreted as follows:

Definition 2.2 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, I is a Σ in-
terpretation iff

I is a quadruple 〈U, S, A, R〉,
U is a set, the universe or carrier,
S is a total function from U to S,
A is a total function from A to the set of partial functions from U to

U,
for each α ∈ A and each u ∈ U,

if A(α)(u) is defined
then F〈S(u), α〉 is defined, and S(A(α)(u)) v F〈S(u), α〉, and

for each α ∈ A and each u ∈ U,
if F〈S(u), α〉 is defined then A(α)(u) is defined,

R is a total function from R to the power set of
⋃

n∈IN

U
n
, and

for each ρ ∈ R, R(ρ) ⊆ U
AR(ρ)

.

We sometimes call interpretations also structures. As one can see in the last
line, relations do not only range over tuples of individuals, but over tuples of
chains of individuals.

Definition 2.3 For each signature Σ = 〈G,v,S,A,F ,R,AR〉,
Ĝ = G ∪ {chain, echain, nechain,metatop},
v̂ = v ∪ {〈echain, chain〉 , 〈nechain, chain〉} ∪

{
〈σ, σ〉

∣∣∣σ ∈ Ĝ\G
}

∪
{
〈σ,metatop〉

∣∣∣σ ∈ Ĝ
}

,

Ŝ = S ∪ {echain, nechain}, and

Â = A ∪ {†, .}.
Definition 2.4 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ
interpretation I = 〈U, S, A, R〉,

Ŝ is the total function from U to Ŝ such that
for each u ∈ U, Ŝ(u) = S(u),

for each u1 ∈ U, . . . , for each un ∈ U,

5

Kepser

Ŝ(〈u1, . . . , un〉) =

echain if n = 0,

nechain if n > 0
, and

Â is the total function from Â to the set of partial functions from U to U
such that

for each α ∈ A, Â(α) = A(α),

Â(†) is the total function from U+ to U such that for each
〈u0, . . . , un〉 ∈ U+,

Â(†)(〈u0, . . . , un〉) = u0, and

Â(.) is the total function from U+ to U∗ such that for each
〈u0, . . . , un〉 ∈ U+,

Â(.)(〈u0, . . . , un〉) = 〈u1, . . . , un〉.

† returns the head (left-most element) of a non-empty chain, and . its rest.

VAR is a countably infinite set of symbols, the variables.

Definition 2.5 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, T Σ is the
smallest set such that

:∈ T Σ,
for each v ∈ VAR, v ∈ T Σ, and
for each α ∈ Â and each τ ∈ T Σ, τα ∈ T Σ.

We call each element of T Σ a Σ term. A Σ term consists of either the reserved
symbol ‘:’ or a variable followed by a (possibly empty) string of symbols of the
expanded attribute set. To determine the interpretation of a term, we need
the notion of a variable assignment.

Definition 2.6 For each signature Σ, for each Σ interpretation I =
〈U, S, A, R〉,

Ass I = U
VAR

is the set of variable assignments in I.

We note that the denotation of a variable can be a chain of elements from U.
Σ terms are interpreted as partial functions from U to U.

Definition 2.7 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ
interpretation I = 〈U, S, A, R〉, for each ass ∈ Ass I, T ass

I is the total function
from T Σ to the set of partial functions from U to U such that for each u ∈ U,

T ass
I (:)(u) is defined and T ass

I (:)(u) = u,
for each v ∈ VAR, T ass

I (v)(u) is defined and T ass
I (v)(u) = ass(v),

for each τ ∈ T Σ, for each α ∈ Â,
T ass

I (τα)(u) is defined

iff T ass
I (τ)(u) is defined and Â(α)(T ass

I (τ)(u)) is defined, and
if T ass

I (τα)(u) is defined

then T ass
I (τα)(u) = Â(α)(T ass

I (τ)(u)).

6

Kepser

We now define the set of descriptions (or formulae) of RSRL.

Definition 2.8 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, DΣ is the
smallest set such that

for each σ ∈ Ĝ, for each τ ∈ T Σ, τ ∼ σ ∈ DΣ,
for each τ1 ∈ T Σ, for each τ2 ∈ T Σ, τ1 ≈ τ2 ∈ DΣ,
for each ρ ∈ R, for each x1 ∈ VAR, . . . , for each xAR(ρ) ∈ VAR,

ρ(x1, . . . , xAR(ρ)) ∈ DΣ,
for each δ ∈ DΣ, ¬δ ∈ DΣ,
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1 ∧ δ2] ∈ DΣ,
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1 ∨ δ2] ∈ DΣ.
for each x ∈ VAR, for each δ ∈ DΣ, ∃x δ ∈ DΣ,
for each x ∈ VAR, for each δ ∈ DΣ, ∀x δ ∈ DΣ,

In RSRL, the quantification domains are so-called components of elements.
Given an element in an interpretation, its components are all those elements
that can be reached via some feature path:

Definition 2.9 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ
interpretation I = 〈U, S, A, R〉, and for each u ∈ U,

Cou
I =

u′ ∈ U

∣∣∣∣∣∣∣∣∣∣∣∣

for some ass ∈ Ass I,

for some π ∈ A∗,

T ass
I (:π)(u) is defined, and

u′ = T ass
I (:π)(u)

.

The following definition is a variant of the usual definition of a modified vari-
able assignment.

Definition 2.10 For each signature Σ, for each Σ interpretation I =
〈U, S, A, R〉, for each ass ∈ Ass I, for each v ∈ VAR, for each w ∈ VAR,
for each u ∈ U,

ass u
v
(w) =

u if v = w

ass(w) otherwise.

Here is finally the definition of the denotation of a description.

Definition 2.11 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ
interpretation I = 〈U, S, A, R〉, for each ass ∈ Ass I, Dass

I is the total function
from DΣ to the power set of U such that

for each τ ∈ T Σ, for each σ ∈ Ĝ,

Dass
I (τ ∼ σ) =

u ∈ U

∣∣∣∣∣∣
T ass

I (τ)(u) is defined, and

Ŝ(T ass
I (τ)(u)) v̂ σ

,

7

Kepser

for each τ1 ∈ T Σ, for each τ2 ∈ T Σ,

Dass
I (τ1 ≈ τ2) =

u ∈ U

∣∣∣∣∣∣∣∣∣

T ass
I (τ1)(u) is defined,

T ass
I (τ2)(u) is defined, and

T ass
I (τ1)(u) = T ass

I (τ2)(u)

,

for each ρ ∈ R, for each x1 ∈ VAR, . . . , for each xAR(ρ) ∈ VAR,
Dass

I (ρ(x1, . . . , xAR(ρ)))

=
{

u ∈ U

∣∣∣〈ass(x1), . . . , ass(xAR(ρ))
〉 ∈ R(ρ)

}
,

for each δ ∈ DΣ,
Dass

I (¬δ) = U\Dass
I (δ),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,
Dass

I ([δ1 ∧ δ2]) = Dass
I (δ1) ∩Dass

I (δ2),
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1 ∨ δ2]) = Dass

I (δ1) ∪Dass
I (δ2).

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (∃v δ) =

u ∈ U

∣∣∣∣∣∣
for some u′ ∈ Cou

I ,

u ∈ D
ass u′

v
I (δ)

,

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (∀v δ) =

u ∈ U

∣∣∣∣∣∣
for each u′ ∈ Cou

I ,

u ∈ D
ass u′

v
I (δ)

.

It is in particular the interpretation of quantification which is special. It con-
tains two unusual elements: localisation and transitive closure. Localisation
because the quantification for a particular element in the universe ranges only
over its components, and transitive closure, because the components form the
transitive closure of the one step transition from one element in the universe
to the next via features.

To get to the chainless variant of RSRL some of the above definitions need
slight modifications. In Definition 2.2 of interpretations, relations must be
relations on individuals, only, not on chains. The extended signature and
its interpretation in Definitions 2.3 and 2.4 are no longer needed. And in
Definition 2.6 variables can only be assigned to individuals, not chains.

3 Truth in a Finite RSRL-Structure is Undecidable

Since RSRL is a description logic, the notion of truth is only indirectly present.
But already Richter observes that one can say an RSRL-formula ϕ is true in
some interpretation I with variable assignment b if its denotation Db

I (ϕ) = UI

is the whole universe. In this case we just write (I, b) |= ϕ. A formula is false,
if it is not true.

8

Kepser

One of the important differences between RSRL and classical logic is the fact
that on the classical side the truth of a sentence in a given finite model can
be decided while on the RSRL side it cannot in general. In the classical case
there exists a result in descriptive complexity theory (see [2], Chapter 6) by
Immerman [3] that shows that even if we enrich first order logic by determin-
istic transitive closure, the complexity for deciding whether or not a sentence
is true in a given finite structure is in LOGSPACE in the size of the structure,
so very low. The situation for RSRL is quite different.

Theorem 3.1 Given a sentence ϕ and a finite RSRL-interpretation I, it is
in general not decidable, if I models ϕ.

We prove this theorem by coding Post correspondence problems in finite
RSRL-structures. Let Γ be an alphabeth. A Post correspondence system
[10] is a finite set P of ordered pairs of nonempty strings; that is P is a
finite subset of Γ+ × Γ+. Here is a simple example: Let Γ = {a, b} and
P = {(a, ab), (ba, a)}. A match of P is any string w ∈ Γ∗ such that, for some
n > 0 and some (not necessarily distinct) pairs (u1, v1), . . . , (un, vn) ∈ P it
is the case that w = u1 . . . un = v1 . . . vn. A match for the example is aba:
a ba
ab a

. The Post correspondence problem is the question whether there exists
a match for a given system P . Post showed that this question is in general
undecidable (if Γ consists of more than 2 letters).

Let P be a Post correspondence system. It will be coded as follows. Each
letter of Γ is a node in the feature structure, so Γ is the carrier of the RSRL-
interpretation. There exists only one singe sort s, it is appropriate for all
letters. There is a single feature f . Feature f is appropriate for sort s and
sort s is appropriate for (s, f). Let k be the cardinality of Γ and e be an
enumeration of Γ. We define 〈e(i), e(i + 1)〉 ∈ f for each 0 < i < k and
〈e(k), e(1)〉 ∈ f . Thus f forms a complete cycle around the letters. Conse-
quently, for each a ∈ Γ : Coa = Γ. This simplifies proofs significantly: Quan-
tification now behaves (almost) classically. To continue the above example,
here is its RSRL-coding:

A8?9>:=;<
s

f ++
B8?9>:=;<

s
f

kk

We define three relations, all of them are relations on chains of letters. The
first relation, Post, contains all pairs of P , i.e., for all u, v ∈ Γ+ : (u, v) ∈ Post
iff (u, v) ∈ P . The second relation, Conc, defines concatenation of chains of
letters:

9

Kepser

∀x y z Conc(x, y, z) ↔ (Ŝ(x) ∼ echain ∧ y = z) ∨
(Ŝ(x) ∼ nechain∧
∃w r1 r2 : x† = w ∧ z† = w ∧ x . = r1

∧ z . = r2 ∧ Conc(r1, y, r2))

Lemma 3.2 For all chains x, y, z ∈ Γ∗ : Conc(x, y, z) if and only if z is the
concatenation of x and y.

Proof. Let x, y, z ∈ Γ∗ with Conc(x, y, z). We show that z is the concatena-
tion of x and y by an induction on the length of x. If x is the empty chain,
then the first disjunct holds and, since y = z, clearly z is the concatenation of
x and y. If x is non-empty, then, by the second disjunct, there is a letter w
which is the head of x and the head of z and a chain r1 which is the tail of x
and a chain r2 which is the tail of z such that Conc(r1, y, r2). Since the length
of r1 is smaller than that of x, it follows by the induction hypothesis that r2

is the concatenation of r1 and y. Thus wr2 is the concatenation of wr1 and y.

Let x, y, z ∈ Γ∗ with z being the concatenation of x and y. We show that
Conc(x, y, z) by an induction on the length of x. If x is the empty chain, then
y = z and thus the first disjunct holds and therefore Conc(x, y, z). If x is
non-empty, then we can split it up into the first letter w of x and the rest
r1 of x. Since z is the concatenation of x and y, we know we can split up z
also and w must be the first letter of z; we call the rest r2. Clearly, r2 is the
concatenation of r1 and y. By induction hypothesis, Conc(r1, y, r2). Thus the
second disjunct holds, and therefore Conc(x, y, z). 2

The third relation, Post-Chain, contains all pairs of chains that can be con-
structed by pairwise concatenating pairs from Post.

∀x y Post-Chain(x, y) ↔
Post(x, y) ∨
(∃u1 u2 v1 v2 Ŝ(u1) ∼ nechain ∧ Ŝ(u2) ∼ nechain ∧ Ŝ(v1) ∼ nechain

∧ Ŝ(v2) ∼ nechain ∧ Conc(u1, u2, x) ∧ Conc(v1, v2, y)

∧Post-Chain(u1, v1) ∧ Post(u2, v2))

A pair of chains is in Post-Chain iff it is a pair of the Post correspondence
system Post or both components can be split up into subchains the first of
which is in Post-Chain and the second a pair of the Post correspondence system
Post.

Lemma 3.3 For all chains x, y ∈ Γ+ : Post-Chain(x, y) if and only if there

10

Kepser

is an n > 0 and strings u1, . . . , un, v1, . . . , vn ∈ Γ+ such that x = u1 . . . un,
y = v1 . . . vn and for each 1 ≤ i ≤ n : (ui, vi) ∈ P .

Proof. Let there be an n > 0 and strings u1, . . . , un, v1, . . . , vn ∈ Γ+ such
that x = u1 . . . un, y = v1 . . . vn and for each 1 ≤ i ≤ n : (ui, vi) ∈ P . We show
Post-Chain(x, y) by an induction on n.
Base case n = 1. In this case (x, y) ∈ P and (x, y) ∈ Post and therefore
(x, y) ∈ Post-Chain by the first disjunct of the definition.
Step case n > 1. Let a1 = u1 . . . un−1 and b1 = v1 . . . vn−1. Then (a1, b1) ∈
Post-Chain by induction hypothesis. a1 and b1 are non-empty chains by defini-
tion, and x = a1un and y = b1vn. Of course (un, vn) ∈ Post. Hence the second
disjunct of the Post-Chain definition holds. And therefore (x, y) ∈ Post-Chain.

Let (x, y) ∈ Post-Chain. Then by definition of Post-Chain either (x, y) ∈
P or x is the concatenation of the two non-empty chains u1 and u2, y is
the concatenation of the two non-empty chains v1, and v2, (u2, v2) ∈ P and
(u1, v1) ∈ Post-Chain, and u1 is shorter than x as v1 is shorter than y. The
argument can be repeated for the pair (u1, v1) and so on. The splitting process
must terminate since the resulting pair is always smaller. And each step chops
of a pair from P . Hence (x, y) is indeed the concatenation of pair from P . 2

To continue our simple example from above, we use standard Prolog list no-
tation to show part of the denotation of Post, Conc, and Post-Chain:
Post = {([a], [ab]), ([ba], [a])},
Conc ⊃ {([a], [a], [aa]), ([a], [b], [ab]), ([a], [ab], [aab])}, and
Post-Chain ⊃ {([a], [ab]), ([ba], [a]), ([aba], [aba]), ([baa], [aab]), ([aa], [abab])}.
Now consider the formula

∃x Post-Chain(x, x).

By the above lemma, this formula expresses that there is a match of the Post
correspondence system. If truth of the conjunction of this formula together
with the defining formulae of Conc and Post-Chain was decidable in the given
RSRL-interpretation, we had a method for solving Post correspondence prob-
lems.

Compare this with the already quoted result by Immerman [3] for classical first
order logic. The key difference of course is the presence of chains as ranges for
variables and argument positions of relations. Although we also need a logic
that is expressive enough to state the definitions of Conc and Post-Chain, it is
primarily the chains that we need to code Post correspondence problems. In
some sense, this is a discussion on the notion of finiteness of an interpretation.
An interpretation is finite, if its carrier, its set of nodes, is finite. But even
then, the set of chains of these nodes is infinite. So, in some sense, we have an
infinite domain here. One way of interpreting this is to say that RSRL can and

11

Kepser

perhaps should be seen as a two-sorted 2 logic. We have two related domains
of denotation: a domain of nodes and a domain of finite sequences of nodes.
When taking this view variables and relations must be regarded as inherently
polymorphic. It seems unlikely that this polymorphism is really needed in the
formalisation of HPSG. If it is indeed not, the above result could be taken
as an argument to restate RSRL as a two-sorted logic, because a two-sorted
reformulation would not only make the logic more perspicuous, it would also
make the undecidability result look quite as one would have expected it.

4 Chainless RSRL is in PTIME

The uncomputability result of the previous section relies on the existence of
chains. It is therefore natural to ask what complexity result can be obtained
when leaving out chains. We can show that if a class of finite structures is
definable in chainless RSRL, then it is decidable by a deterministic Turing
machine in a time that is polynomial in the size of the input structures. In
this section, we follow closely the book on finite model theory by Ebbinghaus
and Flum [2], in particular Chapter 6. Let K be a class of finite RSRL-
interpretations. We write K ∈ RSRL if K is axiomatisable in RSRL. Axioma-
tisability in a description logic is to be read as follows. All those structures
are axiomatised for which the defining formula is true, in other words has the
whole carrier as denotation.

Let K be a class of finite interpretations and M a Turing machine. M accepts
K if M accepts exactly those finite interpretations that lie in K. We define K
is in PTIME (“deterministic polynomial time”) iff there exists a deterministic
Turing machine M and a polynomial p ∈ IN[x] such that M accepts K and
M is p time-bounded.

We will now take RSRL-interpretations as inputs to Turing machines. We
consider only finite interpretations, infinite ones cannot be input to a machine.
Let I be a finite interpretation with |I| = n. By passing to an isomorphic copy
we can and always will assume that the carrier UI = {0, 1, . . . , n−1}, an initial
sequence of the natural numbers.

The machine has input tapes and work tapes, all infinitely extending to the
right. The input tapes are the universe tape, the sort tape, a feature tape for
each feature and a relation tape for each relation. The universe tape contains
just n consecutive 1, so it looks like this

α 1 1 . . . 1 0 0 . . .

−1 0 1 n− 1 n n + 1

2 sorted, of course, in the logical sense, not the HPSG sense.

12

Kepser

The sort tape contains the sort for each element. The inscription of cell i is σ
iff S(i) = σ and the rest of the tape is filled with zeros.

Features and relations are both coded in the same way, features being spe-
cial types of binary relations. To code relation R, let R be r-ary, that is,
R ⊆ {0, . . . , n − 1}r. For j < nr, let |j|r be the j-th r-tuple in the lexico-
graphic ordering of {0, . . . , n− 1}r; in other words, look at the unique n-adic
representation of j,

j = j1 · nr−1 + j2 · nr−2 + . . . + jr−1 · n + jr with 0 ≤ ji < n,

and set |j|r = (j1, . . . , jr). Then the tape coding R has the inscription

α a0 a1 a2 a3 . . . anr−1 0

−1 0 1 2 3 nr − 1 nr

where aj = 1 iff R|j|r and aj = 0 iff not R|j|r.
Formulae may contain free variables. The values of these variables are de-
termined by assignment functions. So, in order to compute on structures we
would need to code assignment functions, too. Instead, we look at a variant of
RSRL which allows for individual constants. This obviously does not extend
the expressive power of the language, since every constant can be replaced by
a free variable. We will do just the opposite and replace every free variable by
a new constant in an extended signature and fix the denotation of the constant
to be exactly the element that is the denotation of the variable it replaces.
This way, we need not code assignment functions. For every constant, there
is an input tape. Since the denotation of a constant is a number < n, the
constant is coded by the binary representation of that number.

The machine also possesses several work tapes. We define the first work tape
to be the output tape. That is to say, if the machine halts, the first work tape
contains the information which elements are in the denotation of the formula
ϕ. So, the i-the cell of the tape contains a 1 iff i ∈ D(ϕ) and a 0 otherwise.
All other cells are padded with 0’s.

We want to show that for any sentence of RSRL the class K of its finite models
is in PTIME. We even show that there is a machine M strongly witnessing
K ∈ PTIME, that is,

• M accepts K;
• for any interpretation I every run of M , started with I stops; in particular,

M decides K;
• for any interpretation I every run of M satisfies the polynomial time bound.

Theorem 4.1 Let K be a class of finite interpretations of chainless RSRL.
If K ∈ RSRL then K ∈ PTIME.

13

Kepser

Proof. The proof proceeds by induction on the axiomatising formula ϕ.
Let ϕ be atomic. It can have three different forms: R(c1, . . . , cr) for some
r-ary relation R; or t1 ≈ t2 with terms t1, t2; or t ∼ σ with term t and sort
σ. In the first case, we compute the number l represented by (c1, . . . , cr) in
n-ary notation and then look up the l-the cell of the input tape for R. If it
contains a 1, a 1 is written onto the first n cells of the first work tape. If it
contains a 0, a 0 is written onto the first n cells of the first work tape. Since
l is a polynome over n it can be computed in polynomial time.

In the second case we have to compute the denotation of the terms t1, t2 for
each element 0 ≤ i < n. For each of the two terms we use a work tape
containing the denotation of the term application onto i computed so far in
binary notation. For the first term t1, the initial inscription of its work tape
is i, iff t1 starts with : as leftmost symbol, or the value of the constant cv

as given from the input tape for that constant, iff cv is the leftmost symbol.
After initialisation, for each feature f we look up the result of applying f to
the element on the work tape. Even though f is represented as a relation,
we find that value by checking if (j, k) ∈ f for each 0 ≤ k < n. Since f is
functional, for at most one k there is (j, k) ∈ f . If there is one, k is written
onto the work tape and we proceed with the next feature of t1. If there is
none, this means the term t1 is undefined on i. Thus we write a 0 onto the i’s
cell of the output tape and proceed with i + 1. Analogously we calculate the
application of t2 onto i. Finally we compare the values of the two work tapes.
If they are the same number, we write a 1 onto the i’s cell of the output tape.
If the numbers are different, we inscribe a 0. Then we proceed with i + 1.
Initialising a work tape is logarithmic in n. Application of a feature func-
tion is cubic in n. Hence the denotation of the formula can be computed in
polynomial time.

The third case is somewhat similar to the second. For each 0 ≤ i < n, we
calculate the denotation of term t exactly as described in the case. If t is
undefined on i, we just note a 0 on the i’s cell of the output tape. Otherwise
we get to an element m and check now the m’s cell of the sort tape to see if
it agrees with σ. If so, we write a 1 on the i’s cell of the output tape, if not,
we write a 0. Then we proceed with i + 1.
Initialising a work tape is logarithmic in n. Application of a feature function
is cubic in n. Checking a sort is linear in n. Hence the denotation of the
formula can be computed in polynomial time.

Let ϕ be non-atomic. If ϕ = ¬ψ, then there is by induction hypothesis a
machine that computes ψ in polynomial time. We take this machine and add
a step at the end. In this step, the output on the first work tape is reversed
by replacing on the first n cells every 1 by a 0 and vice versa. This step is
clearly linear in n. Thus the machine for ϕ is in PTIME.

Let ϕ = ψ ∨ χ. By induction hypothesis there are PTIME-machines Mψ and
Mχ for ψ and χ. A machine Mϕ for ϕ is constructed by running Mψ and

14

Kepser

copying the result to a work tape, running Mχ and copying the result onto
another work tape and finally reading the results on the work tapes cell by
cell and writing a 1 on the first work tape whenever there is a 1 on one of
the two work tapes and a 0 otherwise, a step, which is apparently linear in n.
Thus Mϕ is in PTIME.

Let ϕ = ψ ∧ χ. By induction hypothesis there are PTIME-machines Mψ and
Mχ for ψ and χ. A machine Mϕ for ϕ is constructed by running Mψ and
copying the result to a work tape, running Mχ and copying the result onto
another work tape and finally reading the results on the work tapes cell by
cell and writing a 1 on the first work tape whenever there is a 1 on both of
the two work tapes and a 0 otherwise, a step, which is apparently linear in n.
Thus Mϕ is in PTIME.

Let ϕ = ∃xψ. Remember that D(∃xψ) = {0 ≤ i < n | ∃j < n : (i, j) ∈
Co and i ∈ D(ψj/x)}. A machine Mϕ for ϕ works in two steps. In a first
step, it computes the components for every element of the carrier. We give
here a polynomial algorithm that can easily be used to define a machine. The
binary relation Components Co ⊆ {0, 1, . . . , n − 1}2 is initialised by setting
(i, i) ∈ Co for all 0 ≤ i < n. We need one additional variable new.

Set new := false

Repeat

For i := 0 to n-1

For j := 0 to n-1

If Co(i,j) then

For k := 0 to n-1

For all features F

If F(j,k) and not Co(i,k) then

Set Co(i,k) := true

Set new := true

Until not new

Since Co ⊆ {0, 1, . . . , n − 1}2 and Co grows monotone in each run of the
repeat loop, the repeat loop terminates after at most n2 steps. Therefore
the complexity of the algorithm is O(n5). The incarnation as a machine is
even worse, because looking up and writing to a cell of the representation of
a binary relation – as are Co and the features – is quadratic in n. Hence the
complexity for the machine is O(n7), bad but still polynomial, as desired.

It is of course clear that the Component matrix needs to be computed only
once, even if the formula contains several quantifiers.

The second step consists in calculating the denotation D of ∃xψ. By induction
hypothesis there is for every 0 ≤ j < n a PTIME-machine Mψj/x for ψ where
the variable x is replaced by the constant j. Again we provide a pseudo-code
algorithm. D is initialised by setting everything to false, analog to erasing the
first work tape.

15

Kepser

For i := 0 to n-1

Set j := 0

Set found := false

While (j < n and not found)

If Co(i,j) then

Run Mψj/x

If i ∈ Output(Mψj/x) then

Set D(i) := true

Set found := true

Set j := j+1

The algorithm has the complexity O(n2) multiplied by the complexity of Mψ.
Since Mψ is in PTIME by induction hypothesis, it follows that Mϕ is in
PTIME, too.

Let ϕ = ∀xψ. This case is analog to the existential quantification case. 2

As a simple consequence of this proof we obtain the following corollary.

Corollary 4.2 Calculating the denotation of a chainless RSRL-formula in a
finite RSRL-interpretation is PTIME-hard in the size of the interpretation.

The denotation of an RSRL-formula is the set of those elements of the universe
for which the formula holds true. Even if the formula is a sentence and it turns
out that it is true for all elements, it can well be the case that subformulae have
denotations that differ from the whole universe and the empty set. Therefore
it is necessary to store intermediate results of subformulae. And this cannot
be done with only logarithmic space available. It is therefore very likely that
PTIME is the least upper bound. Thus it is basically the fact that RSRL is
a description logic that leads to the complexity being a little worse compared
to the result for classical logic.

Acknowledgement

I would like to thank Frank Morawietz, Uwe Mönnich, Frank Richter, and
Manfred Sailer for suggestions and helpful discussions.

References

[1] Church, A., A note on the entscheidungsproblem, Journal of Symbolic Logic 1
(1936), correction ibid. P. 101–102.

[2] Ebbinghaus, H.-D. and J. Flum, “Finite Model Theory,” Springer-Verlag, 1995.

16

Kepser

[3] Immerman, N., Expressibility as a complexity measure: Results and directions,
in: Second Structure in Complexity Theory Conference (1987), pp. 194–202.

[4] Kepser, S., “A Satisfiability Algorithm for a Typed Feature Logic,” Master’s
thesis, Seminar für Sprachwissenschaft, Universität Tübingen, Arbeitspapiere
des SFB 340, Bericht Nr. 60 (1994).

[5] King, P. J., “A Logical Formalism for Head-Driven Phrase Struture Grammar,”
Ph.D. thesis, University of Manchester (1989).

[6] King, P. J., Towards truth in HPSG, in: V. Kordoni, editor, Tübingen Studies
in Head-Driven Phrase Structure Grammar, Vol 2, Arbeitspapiere des SFB 340,
Bericht Nr. 132, 1999 pp. 301–352.

[7] King, P. J., K. I. Simov and B. Aldag, The complexity of modellability in finite
and computable signatures of a constraint logic for head-driven phrase structure
grammar, Journal of Logic, Language and Information 8 (1999), pp. 83–110.

[8] Pollard, C. and I. A. Sag, “Information Based Syntax and Semantics, Vol. 1:
Fundamentals,” Number 13 in Lecture Notes, CSLI, 1987.

[9] Pollard, C. and I. A. Sag, “Head-Driven Phrase Structure Grammar,”
University of Chicago Press, 1994.

[10] Post, E., A variant of a recursively unsolvable problem, Bulletin of the AMS 52
(1946), pp. 264–268.

[11] Richter, F., “A Mathematical Formalism for Linguistic Theories with an
Application in Head-Driven Phrase Structure Grammar,” Ph.D. thesis, SfS,
Universität Tübingen (2000).

[12] Richter, F., M. Sailer and G. Penn, A Formal Interpretation of Relations and
Quantification in HPSG, in: G. Bouma, E. Hinrichs, G.-J. M. Kruijff and R. T.
Oehrle, editors, Constraints and Resources in Natural Language Syntax and
Semantics, CSLI Publications, 1999 pp. 281–298.

17

