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Properties of Binary Transitive

Closure Logics over Trees

Stephan Kepser

Abstract

Binary transitive closure logic (FO∗ for short) is the extension of first-order
predicate logic by a transitive closure operator of binary relations. Determin-
istic binary transitive closure logic (FOD∗) is the restriction of FO∗ to deter-
ministic transitive closures. It is known that these logics are more powerful
than FO on arbitrary structures and on finite ordered trees. It is also known
that they are at most as powerful as monadic second-order logic (MSO) on
arbitrary structures and on finite trees. We will study the expressive power of
FO∗ and FOD∗ on trees to show that several MSO properties can be expressed
in FOD∗ (and hence FO∗).

The following results will be shown.

. A linear order can be defined on the nodes of a tree.

. The class EVEN of trees with an even number of nodes can be defined.

. On arbitrary structures with a tree signature, the classes of trees and finite
trees can be defined.

. There is a tree language definable in FOD∗ that cannot be recognised by
any tree walking automaton.

. FO∗ is strictly more powerful than tree walking automata.

These results imply that FOD∗ and FO∗ are neither compact nor do they

have the Löwenheim-Skolem-Upward property.

6.1 Introduction

The question about the best suited logic for describing tree properties or
defining tree languages is an important one for model theoretic syntax
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as well as for querying treebanks. Model theoretic syntax is a research
program in mathematical linguistics concerned with studying the de-
scriptive complexity of grammar formalisms for natural languages by
defining their derivation trees in suitable logical formalisms. Since the
very influential book by Rogers (1998) it is monadic second-order logic
(MSO) or even more powerful logics that are used to describe linguistic
structures.

With the advent of XML and query languages for XML documents,
in particular XPath, the interest in logics for querying treebanks rose
dramatically. There is now a large interest in this topic in computer
science. Independent of that, but temporarily parallel, large syntacti-
cally annotated treebanks became available in linguistics. They provide
nowadays a rich and important source for the study of language. But
in order to access this source, suitable query languages for treebanks
are required.

One of the simplest properties that are known to be inexpressible in
first-order predicate logic (FO henceforth) is the transitive closure of a
binary relation. It is therefore a natural move to extend FO by a binary
transitive closure operator. And this move has been done before in the
definition of query languages for relational databases, in particular for
the SQL3 standard. But it seems that the expressive power of FO plus
binary transitive closures (FO∗ for short) to define tree properties is
not much studied yet. This is somewhat surprising, because there is
reason to believe that FO∗ is more user friendly than MSO. Most users
of query languages, in particular linguists, understand the concept of
a transitive closure very well and know how to use it. It is a lot more
difficult to use set variables to describe tree properties. An example
for this claim is the fact MSO is capable of defining binary transitive
closures, as shown by Moschovakis (1974). A formula expressing the
transitive closure in MSO is given at the end of the next section. It is
questionable that ordinary users (without profound knowledge of MSO)
would be able to find this formula.

There exists a more restricted version of transitive closure, namely
deterministic transitive closure (FOD∗). The deterministic transitive
closure of a binary relation is the transitive closure of the functional
or deterministic part of the relation. We propose to seriously consider
FOD∗ as a language for defining tree properties. We do so by show-
ing that several important MSO definable properties can be defined in
FOD∗. One such example is the ability to define a linear order on the
nodes of a tree. The order resembles depth-first left-to-right traversal
of a tree. A linear order is a powerful concept that can be used defin-
ing additional properties. For example, it is used to count the number
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of nodes in a tree modulo a given natural number. An instance is the
definition of the class EVEN of all trees with an even number of nodes
in FOD∗.

Arguably an important reason for Rogers’ choice of MSO is its abil-
ity to axiomatise trees. I.e., there exists a set of axioms such that an
arbitrary structure (of a suitable signature) is a tree – finite or infinite
– iff it is a model of the axioms. It is known that this characterisa-
tion of trees cannot be done using FO. But the full expressive power
of MSO may not really be needed for the axiomatisation, because we
show that arbitrary trees and finite trees can be axiomatised in FOD∗.
This capability of axiomatising finite and infinite trees implies that
FOD∗ (and hence also FO∗) is neither compact nor does it possess the
Löwenheim-Skolem-Upward property.

There exists a tree automaton concept that defines serial instead of
parallel processing of nodes in a tree, namely tree walking automata
(TWA). As the name implies, a tree is processed by walking up and
down in it and inspecting nodes serially. One may therefore believe
that these automata could be the automaton-theoretic correspondant of
FO∗. But we show here that FO∗ is more powerful. Every tree language
that is recognised by a TWA can be defined in FO∗. The relationship
towards FOD∗ is less clear. There are FOD∗-definable tree languages
that cannot be recognised by any TWA.

6.2 Preliminaries

Let M be a set. We write ℘(M) for the power set of M . Let R ⊆M×M
be a binary relation over M . The transitive closure TC(R) of R is the
smallest set containing R and for all x, y, z ∈ M such that (x, y) ∈
TC(R) and (y, z) ∈ TC(R) we have (x, z) ∈ TC(R). I.e.,

TC(R) :=
⋂

{W | R ⊆W ⊆M ×M, ∀x, y, z ∈M :
(x, y), (y, z) ∈ W =⇒ (x, z) ∈W}.

Deterministic transitive closure is the transitive closure of a deter-
ministic, i.e., functional relation. For an arbitrary binary relation R we
define its deterministic reduct by

RD := {(x, y) ∈ R | ∀z : (x, z) ∈ R =⇒ y = z}.

Now
DTC(R) := TC(RD).

We consider labelled ordered unranked trees. A tree is ordered if the
set of child nodes of every node is linearly ordered. A tree is unranked if
there is no relationship between the label of a node and the number of
its children. For brevity we just write tree for labelled ordered unranked
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tree. In Sections 6.3 and 6.5 we only consider finite trees, in Section 6.4
we also consider infinite trees.

Definition 1 A tree domain is a non-empty subset T ⊆ N
∗ such that

for all u, v ∈ N
∗ : uv ∈ T =⇒ u ∈ T (closure under prefixes) and for

all u ∈ N
∗ and i ∈ N : ui ∈ T =⇒ uj ∈ T for all j < i (closure under

left sisters).

Let L be a set of labels. A tree is a pair (T, Lab) where T is a tree
domain and Lab : T → L is a node labelling function.

A tree is finite iff its tree domain is finite.

We remark that a tree domain is at most countable, since it is a
subset of a countable union of countable sets.

The languages to talk about trees will be extensions of first-order
logic. Their syntaxes is as follows. Let X = {x, y, z, w, u, x1, x2, x3, . . . }
be a denumerable infinite set of variables. The atomic formulae are
L(x) for each label L ∈ L, x→ y, x ↓ y, and x = y. Complex formulae
are constructed from simpler ones by means of the boolean connec-
tives, existential and universal quantification, and transitive closure.
I.e., if φ and ψ are formulae, then ¬φ, φ ∧ ψ, φ ∨ ψ, ∃x :φ, ∀x :φ, and
[TCx1,x2

φ](x, y), resp., [DTCx1,x2
φ](x, y), are formulae.

The semantics of the first-order part of the language is standard. Let
(T, Lab) be a tree. A variable assignment a : X → T assigns variables
to nodes in the tree. The root node has the empty address ǫ. Now
[[L(x)]]a = T iff Lab(a(x)) = L. [[x ↓ y]]a = T iff a(y) = a(x)i for some
i ∈ N, i.e., ↓ is the parent relation. [[x→ y]]a = T iff there is a u ∈ T and
i ∈ N such that a(x) = ui and a(y) = ui+ 1, i.e., → is the immediate
sister relation.

Boolean connectives and quantification have their standard interpre-
tation. Now, [[[TCx1,x2

φ](x, y)]]a = T iff

(a(x), a(y)) ∈ TC({(b, d) | [[φ]]ab/x1d/x2 = T})

where ab/x1d/x2 is the variable assignment that is identical to a ex-
cept that x1 is assigned to b and x2 to d. If φ is a formula with free
variables x1, x2, it can be regarded as a binary relation φ(x1, x2). Then
[TCx1,x2

φ] is the transitive closure of this binary relation. This lan-
guage is abbreviated FO∗.

And [[[DTCx1,x2
φ](x, y)]]a = T iff

(a(x), a(y)) ∈ DTC({(b, d) | [[φ]]ab/x1d/x2 = T}).

This language is abbreviated FOD∗. It is simple to see that everything
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expressible in FOD∗ can also be expressed in FO∗, because

[DTCx1,x2
φ(x1, x2)](x, y) ↔

[TCx1,x2
φ(x1, x2) ∧ ∀zφ(x1, z) → z = x2](x, y).

It is an open question whether there are tree languages definable in
FO∗ that cannot be defined in FOD∗.

FO∗ is amongst the smallest extension of first-order logic. It is known
that the transitive closure of a binary relation is not first-order definable
(Fagin, 1975). But when talking about trees, people frequently want to
talk about paths in a tree. And a path is the transitive closure of certain
base steps. FOD∗ and FO∗ have at most the expressive power of monadic
second-order logic (MSO). It is an old result, which goes back at least
to Moschovakis (1974, p. 20), that the transitive closure of every MSO-
definable binary relation is also MSO-definable. The following formula
is due to Courcelle (1990). Let R be an MSO-definable binary relation.
Then

∀X (∀z, w(z ∈ X ∧R(z, w) =⇒ w ∈ X) ∧ ∀z(R(x, z) =⇒ z ∈ X))
=⇒ y ∈ X

is a formula with free variables x and y that defines the transitive
closure of R. It follows that every tree language definable in FO∗ can
be defined in MSO. Whether the two logics are equivalent, seems an
open question. For FOD∗, the question is settled. Recently, Bojanczyk
et al. (2006) have shown that the expressive power of MSO for defining
tree languages properly extends the expressive power of FOD∗.

6.3 Definability of Order

One of the abstract insights from descriptive complexity theory is that
order is a very important property of structures. The relationship be-
tween certain logics and classical complexity classes is frequently re-
stricted to ordered structures, i.e., structures where the carrier is lin-
early ordered. The reason for this restriction is to be found in the
fact that computation is an ordered process. Definability and non-
definability results for certain logics over ordered structures frequently
do not extend to unordered structures. It is therefore an important
property of a logic, if the logic itself is capable of expressing order
without recourse to an extended signature. The probably best known
logic with this property is Σ1

1, the extension of first-order logic by arbi-
trary relation variables that are existentially quantified. It is obviously
possible to define order in Σ1

1, because we can say there is a binary
relation that has all the properties of a linear order. These properties
are known to be first-order properties. It is hence the ability to say
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“there is a binary relation” that is the key.
There is no way that FOD∗ or FO∗ could define order on arbitrary

finite structures. But if we only consider ordered trees as models, FOD∗

can define order. Indeed it is possible to give a definition of the depth-
first left-to-right order of nodes in a tree (and some variants).

Proposition 1 There is an explicit definition of a linear order of the

nodes in a tree in FOD∗.

Proof. Define the proper dominance relation of trees Dom(x, y) as
[DTCy,x x ↓ y](y, x). The idea of how to define dominance determinis-
tically by walking upwards from the descendants to the ancestors goes
back to Etessami and Immerman (1995). Similarly but simpler, define
the sister relation Sis(x, y) as [DTCx,y x→ y](x, y). Now define x < y
as

Dom(x, y) ∨ (∃w, v : Sis(w, v) ∧
(w = x ∨Dom(w, x)) ∧ (v = y ∨Dom(v, y))).

The first disjunct expresses the “depth-first” part of the order. The
more complicated second disjunct formalises the “left-to-right” part. It
expresses that there is a common ancestor of nodes x and y and node
x is to be found on a left branch while y is to be found on a right
branch. Care is taken that mutual domination is excluded. Hence the
two disjuncts are mutually exclusive. Since the dominance and the sis-
terhood steps are both irreflexive, the whole relation < is irreflexive.
Furthermore for each pair of distinct nodes in a tree, either one domi-
nates the other, or there is a common ancestor such that one node is on
a left branch while the other is on a right branch. Hence the relation is
total. Transitivity can easily be checked by considering the four cases
involved in expanding x < y and y < z. ⊔⊓

The proposition basically states that ordered trees are ordered struc-
tures in any logic at least as powerful as FOD∗. Note that the root node
is the smallest element of the order. If the tree is finite, the largest ele-
ment is the leaf of the rightmost branch of the tree. The root node is FO-
definable via ¬∃y : y ↓ x. The largest elementMax of the order is FOD∗-
definable by ∃x¬∃y : x < y. The successor y of a node x in the linear
order (Succ(x, y)) is also FOD∗-definable: x < y ∧ ¬∃z : x < z ∧ z < y.
Using a linear order it is possible to count modulo some natural number
on trees. That is for n, k ∈ N we can define the class of finite trees such
that each tree in the class has d × n + k nodes (for some d ∈ N). As
an example, we define the class EVEN of trees with an even number of
nodes (i.e, n = 2, k = 0).

Proposition 2 The class of finite trees with an even number of nodes
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is FOD∗-definable.

Proof. We only consider the case where a tree has more than two nodes.
The formula

∃w : Succ(Root, w) ∧ [DTCx,y∃z : Succ(x, z) ∧ Succ(z, y)](w,Max)

expresses that we go in one step from the root to its successor w. From
w we can reach the last element of the order by an arbitrary number
of two successor steps. If we take the two-successors-step path through
the linear order from the root to the maximum, we have an odd number
of nodes, since a path of n double-successor-steps has n+ 1 nodes. ⊔⊓

Corollary 3 FOD∗ has no normal form of the type [DTCx,y φ(x, y)](r, r)
where φ(x, y) is an FO formula and r the root. The same is true mutatis

mutandis for FO∗.

Proof. With a single application of a DTC-operator we can define trees
with a linear order. If FO with a single DTC-operator is interpreted
over finite successor structures, then it is equivalent to FO with order.
But over finite orderings, EVEN is not definable in FO. ⊔⊓

The above corollary is stated here because it contrasts with a fun-
damental result in descriptive complexity theory. Let FO(TC) be the
extension of FO by transitive closure operators of arbitrary width,
that is the transitive closure of binary relations on tuples of arbi-
trary width. Let FO(DTC) be its deterministic counterpart. Immerman
(1999) showed that both FO(TC) and FO(DTC) on ordered structures
have a normal form consisting of a single outer application of the (de-
terministic) transitive closure operator on an otherwise FO formula.

6.4 Definability of Tree Structures

In previous and all following sections we assume that we only consider
tree models as defined in the Preliminaries section. But in this sec-
tion we take a more general view, a view that has its origin in model
theoretic syntax. The aim is to find whether it is possible to give an
axiomatisation of those structures linguists are interested in. This task
has two subparts. The first consists of defining trees, or more precisely
finite trees, as the intended models. The second part consists of ax-
iomatising linguistic principles such as the Binding theory in the given
logic. We will only be concerned with the first part here. This section is
inspired by the book by Rogers (1998). More specifically we show that
the main results of Chapter 3 carry over to FOD∗. We will frequently
cite this chapter in the current section.

The language of this section is deterministic binary transitive closure
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logic with equality over the following base relations:
⊳ parent relation
⊳∗ dominance relation
⊳+ proper dominance relation
≺ left-of relation

We also assume there to be a set L of unary predicate symbols repre-
senting linguistic labels. We write FOD∗⊳ for this language to indicate
that the base relations differ from the ones in the other sections of this
paper.

A model for FOD∗⊳ is a tuple (U,P,D,L, Lab) where U is a non-
empty domain, P,D and L are binary relations over U interpreting
⊳, ⊳∗ and ≺. And Lab : L → ℘(U) interpretes each label as a subset of
U .

Since the intended models of this language are trees, we have to
restrict the class of models by giving axioms of trees. Many properties
of trees can be defined by first-order axioms. The following 12 axioms
are cited from (Rogers, 1998, p. 15f.).

A1 ∃x∀y : x ⊳∗ y
(Connectivity wrt dominance)

A2 ∀x, y : (x ⊳∗ y ∧ y ⊳∗ x) → x = y
(Antisymmetry of dominance)

A3 ∀x, y, z : (x ⊳∗ y ∧ y ⊳∗ z) → x ⊳∗ z
(Transitivity of dominance)

A4 ∀x, y : x ⊳+ y ↔ (x ⊳∗ y ∧ x 6= y)
(Definition of proper dominance)

A5 ∀x, y : x ⊳ y ↔ (x ⊳+ y ∧ ∀z : (x ⊳∗ z ∧ z ⊳∗ y) → (z ⊳∗ x∨ y ⊳∗ z))
(Definition of immediate dominance)

A6 ∀x, z : x ⊳+ z → ((∃y : x ⊳ y ∧ y ⊳∗ z) ∧ (∃y : y ⊳ z))
(Discreteness of dominance)

A7 ∀x, y : (x ⊳∗ y ∧ y ⊳∗ x) ↔ (x 6≺ y ∧ y 6≺ x)
(Exhaustiveness and exclusiveness)

A8 ∀w, x, y, z : (x ≺ y ∧ x ⊳∗ w ∧ y ⊳∗ z) → w ≺ z
(Inheritance of Left-of wrt dominance)

A9 ∀x, y, z : (x ≺ y ∧ y ≺ z) → x ≺ z
(Transitivity of left-of)

A10 ∀x, y : x ≺ y → y 6≺ x
(Asymmetry of left-of)

A11 ∀x(∃y : x ⊳ y) → (∃y : x ⊳ y ∧ ∀z : x ⊳ z → z 6≺ y)
(Existence of a minimum child)
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FIGURE 1 A non-standard model of the first-order tree axioms.

A12 ∀x, z : x ≺ z → (∃y : x ≺ y ∧ ∀w : x ≺ w → w 6≺ y) ∧
(∃y : y ≺ z ∧ ∀w : w ≺ z → y 6≺ w)

(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 1998, p. 16f.).
Every tree (finite or infinite) obeys to these axioms. But there are non-
standard models, i.e., structures that are models of theses axioms but
would not be considered as trees. Actually, it is not possible to give
a first-order axiomatisation of trees, as was shown by Backofen et al.
(1995). The simplest example of a non-standard model can be gained
by adapting the well-known example of a non-standard model of FO
arithmetics to tree structures. This model is depicted in Figure 1. The
carrier is the disjoint union of the natural numbers and the integers.
The dominance relation is defined by taking the natural order on nat-
ural numbers and integers plus every natural number dominates every
integer. Formally: U = N⊎Z, P = {(n, n+1) | n ∈ N∪Z},D = {(n,m) |
n,m ∈ N, n ≤ m}∪{(n,m) | n,m ∈ Z, n ≤ m}∪{(n, z) | n ∈ N, z ∈ Z},
and L = ∅. This model is not a tree because the integers are infinitely
far away from the root.

The FO axioms demand that the proper dominance relation does
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FIGURE 2 Another non-standard model of the first-order tree axioms.

not only contain the immediate dominance relation but also the tran-
sitive closure of the immediate dominance. In the non-standard model,
proper dominance truly extends the transitive closure of immediate
dominance. All natural numbers properly dominate all integers. But
this part of the dominance relation is not contained in the transitive
closure of immediate dominance. In a proper tree model, the proper
dominance is always identical to the transitive closure of immediate
dominance. This insight can be expressed in FOD∗⊳ as an axiom.

AT1 ∀x, y : x ⊳+ y → [DTCw,zz ⊳ w](y, x)
(Proper dominance is the transitive closure of immediate domi-
nance)

Another way of reading this axiom is to say that the path from an
arbitrary node back to the root is finite.

AT1 together with the first-order axioms does still not suffice to
axiomatise proper trees. An example of a non-standard model for which
AT1 holds true is given in Figure 2. Formally, we set U = {r} ⊎ N ⊎ Z,
P = {(r, z) | z ∈ N ∪ Z}, D = P ∪ {(i, i) | i ∈ {r} ∪ N ∪ Z}, and
L = {(n,m) | n,m ∈ N, n < m}∪ {(n,m) | n,m ∈ Z, n < m}∪ {(n, z) |
n ∈ N, z ∈ Z}. Consider the sisters of a node. They are ordered by ≺,
and there is a left-most sister. Now, in a proper tree, the number of
sisters to the left is finite for every node. In the model in Figure 2 all
integers have infinitely many left sisters. This configuration has to be
avoided by means of one more axiom as follows. We can easily define
that one node is the immediate sister of another node. The relation
IS(x, y) is defined as ∃z : z ⊳ x∧ z ⊳ y∧x ≺ y∧¬∃w : x ≺ w ≺ y. Now
we can spell out an axiom analogue to AT1.

AT2 ∀x, y, z : (x ⊳ y ∧ x ⊳ z ∧ y ≺ z) → [DTCv,wIS(v, w)](y, z)
(Finitely many left sisters)

Theorem 4 Axioms A1–A12, AT1, and AT2 define the class of tree

models.

The proof is analogous to the proof of Theorem 3.9 in (Rogers, 1998).
Consider in particular Footnote 8 on page 23.
Proof. Rogers showed that every tree (in the sense of Definition 1) is
a model of axioms A1–A12 and for each node x ∈ U the sets Ax =
{(y, x) ∈ D} of ancestors of x and Lx = {y | ∃z : (z, x), (z, y) ∈
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D and (y, x) ∈ L} of left sisters of x are finite (Lemma 3.5). And every
tree obviously satisfies axioms AT1 and AT2.

Furthermore, each model of axioms A1–A12 where Ax and Lx are
finite for each node x ∈ U is isomorphic to a tree (Lemma 3.6).

Now suppose a model of A1–A12 satisfies AT1. Then for each node
x ∈ U the set Ax is finite, because it contains the root (A1) and is
constructed of parent-child steps (AT1), and a transitive closure of
single steps cannot reach a limit ordinal. An analogous argument can
be made with respect to models of A1–A12 and AT2. Hence for every
model of of A1–A12, AT1, and AT2 and all nodes x ∈ U we see that
the sets Ax and Lx are finite. By the above quoted Lemma 3.6, these
models are isomorphic to trees. ⊔⊓

The tree models of Axioms A1–A2, AT1, and AT2 can be finite as
well as infinite. But since they are all tree models, they are at most
countable. This is because every tree domain is at most countable (see
remark after Definition 1). And every tree model is isomorphic to a
tree. As an immediate consequence we get that FOD∗ does not have
the Löwenheim-Skolem-Upward property. This property states that if
a theory (i.e., potentially infinite set of sentences) has a model of size ω
it has models of arbitrary infinite cardinalities. It is a typical property
of FO logic.

Corollary 5 The logics FOD∗ and FO∗ do not have the Löwenheim-

Skolem-Upward property.

Linguists are mostly (if not exclusively) concerned with finite trees.
Hence it would be nice if we could restrict the class of models further
down to finite trees. This can indeed be done. Rogers (1998) defines
a linear order on the nodes of a tree as follows. Node x < y iff x ⊳+

y ∨ x ≺ y. By Axiom A7, each pair of nodes is either a member of
the dominance relation or a member of the left-of relation. Hence this
defines indeed a linear order. Actually, the order is the same as the one
in the previous section: depth-first left-to-right tree traversal. As in the
previous section we use Succ(x, y) for y being the immediate successor
of x in the order. Finiteness can now be defined in two steps. Firstly
we demand the linear order to be the deterministic transitive closure
of the immediate successor relation. The consequence of this demand
is that for every element in the order there is only a finite number
of nodes that are smaller than this element. Secondly we demand the
order to have a maximal element. If the maximal element has only a
finite number of elements smaller than it, the tree is obviously finite.
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AF ∀x, y : x < y =⇒ [DTCx,y Succ(x, y)](x, y) ∧
∃x∀y : y < x ∨ y = x.
(Finiteness of the order <)

Theorem 6 Axioms A1–A12, AT1, AT2, and AF define the class of

finite tree models.

Proof. By Theorem 4, every model of the Axioms A1–A12, AT1, and
AT2 is isomorphic to a tree model. If a model is finite, then AF is
certainly true. For the converse, assume that ∀x, y : x < y =⇒
[DTCx,y Succ(x, y)](x, y). By definition of the DTC-operator, the set
{y | y < x} of elements smaller than x is finite for every node x. If the
order has additionally a maximal element m, then it is finite. ⊔⊓

This theorem implies that another property of FO, namely compact-
ness, does not extend to FOD∗.

Corollary 7 The logics FOD∗ and FO∗ are not compact.

FO, on the other hand, is not capable of defining the class of finite
trees. It is well known that compactness and definability of finiteness
of models mutually exclude each other.

6.5 Transitive Closure Logics and Tree Walking

Automata

Tree walking automata were introduced by Aho and Ullman (1971) as
sequential automata on trees. At every moment of its run, a TWA is
in a single node of the tree and in one of a finite number of states. It
walks around the tree choosing a neighboring node based on the current
state, the label of the current node, and the child number of the current
node.

More formally, we consider trees of maximal branching degree k.
The following definition is mainly cited from (Bojanczyk and Colcom-
bet, 2005). Every node v has a type. The possible values are Types =
{r, 1, 2, . . . , k}× {l, i} where r stands for the root, j ∈ {1, . . . , k} states
that v is the j-th child, l states that v is a leaf, i that v is an internal
node. A direction is an element of Dir = {↑, ↓1, . . . , ↓k, stay} where ↑
stands for ‘move to the parent’, ↓j ‘move to the j-th child, and stay to
‘stay at the current node’. A TWA is a quintuple (S,Σ, δ, s0, F ) where
S is a finite set of states, Σ is the alphabet of node labels, s0 ∈ S is the
initial state and F ⊆ S is the set of final states. The transition relation
δ is of the form

δ ⊆ (S × Types × Σ) × (S × Dir).

A configuration is a pair of a node and a state. A run is a sequence
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of configurations where every two consecutive configurations are con-
sistent with the transition relation. A run is accepting iff it starts and
ends at the root of the tree, the first state is s0 and the last state is a
member of F . The TWA accepts a tree iff there is an accepting run.
The set of Σ-trees recognised by a TWA is the set of trees for which
there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot recog-
nise all regular tree languages. This means that MSO and tree automata
are strictly more powerful than TWA. In an extension of their proof we
will show that even FO∗ is more powerful than TWA.

Theorem 8 The classes of tree languages definable in FO∗ strictly

extend the classes of tree languages recognisable by TWA.

Proof. The proof consists of two parts. We will first show that ev-
ery TWA-recognisable tree language is FO∗-definable. Secondly we will
show that there is an FOD∗-definable tree language that cannot be
recognised by any TWA.

The first part of the proof is based on recent results by Neven and
Schwentick (2003). They showed that a tree language is recognisable
by a TWA if and only if it is definable by a formula of the following
type: [TCx,y φ(x, y)](r, r) where r is a constant for the root of a tree,
φ is an FO formula with additional unary depthm predicates. Apart
from the depthm predicates, these formulae are obviously in FO∗. Now,
depthm(x) is true iff x is a multiple of m steps away from the root.
For every m, the predicate depthm can be defined by an FO∗-formula:
[TCx0,xm

∃x1, . . . xm−1 : x0 ↓ x1 ∧ · · · ∧ xm−1 ↓ xm](r, x) is a predicate
that is true on a node x just in case there is a k ∈ N such that x is
at depth k ×m. Thus every TWA-recognisable tree language is FO∗-
definable.

To show the second half of the theorem, we will indicate that the
separating language L given by Bojanczyk and Colcombet (2005) can
be defined in FOD∗. The authors consider binary trees. They show (in
Fact 1) that L can be defined in first-order logic with the following three
basic relations: left and right child, and ancestor relation. Now, left
and right child are obviously FO∗-definable relations. And the ancestor
relation is – as in the previous sections – FOD∗-definable by [DTCy,x x ↓
y](y, x). ⊔⊓

Corollary 9 There exists an FOD∗-definable tree language that is not
TWA-recognisable.

Please note that there exists an alternative proof of Theorem 8. En-
gelfriet and Hoogeboom (2006) have recently shown that transitive clo-
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sure logics correspond to certain pebble automata. (A pebble automa-
ton is a TWA enhanced by a finite sets of pebbles.) More precisely, the
deterministic pebble automata have exactly the same expressive power
as deterministic binary transitive closure logic. And non-deterministic
pebble automata have the same expressive power as binary transitive
closure logic where each transitive closure operator is under the scope of
an even number of negations. Since a TWA is a pebble automaton with
0 pebbles, the first half of above theorem follows from the equivalence
results of (Engelfriet and Hoogeboom, 2006). The second half of the
theorem follows from new results by Bojanczyk et al. (2006) who show
that each additional pebble extends the expressive power of a pebble
automaton. Bojanczyk et al. (2006) also provide an alternative proof
of Corollary 9. As a result, either TWA and DPA are incomparable, or
TWA are less powerful than DPA.

6.6 Conclusion

We showed a range of properties of FOD∗ and FO∗ to indicate that they
should seriously be considered as logics for defining tree languages. Al-
though the addition of binary transitive closure to first-order logic can
be seen as a small one, FOD∗ is capable of expressing important second-
order properties over trees. It is possible to define a linear order over the
nodes in a tree. And using this order one can count modulo any natu-
ral number. On arbitrary structures with appropriate signature one can
axiomatise the classes of trees and finite trees. These axiomatisations
showed that FOD∗ is neither compact nor does it have the Löwenheim-
Skolem-Upward property. Furthermore although tree walking automata
look like they might serve as an automaton model for FO∗, it turns out
that FO∗ is more powerful than TWA.

A word about complexity issues may be in place. FOD∗ and FO∗ have
quite a good data complexity. By translating FO∗ formulae into MSO
formulae and using the equivalence between MSO and tree automata
one can see that FO∗ has a linear time data complexity. And since FO∗

is a sublogic of FO(TC), it also has NLOGSPACE data complexity
whereas FOD∗ has LOGSPACE data complexity. A straight-forward
implementation of transitive closure yields a PTIME query complexity.
It is unclear to the author whether this result can be improved upon.

The main open question is of course whether FO∗ is strictly less
powerful than MSO. It is also interesting to study the relationship of
FO∗ to modal languages for trees like PDLTree (Kracht, 1995). Marx
(2004) basically showed that PDLTree is at most as powerful as FO∗

3,
where FO∗

3 is the restriction of FO∗ where every formula has at most
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3 different variables. ten Cate (2006) recently showed that queries in
XPath with Kleene star and loop predicate have the same expressive
power as FO∗

3.
One may also ask what happens if we introduce the transitive clo-

sure of arbitrary relations, not just binary ones. This logic (abbreviated
FO(TC)) was introduced by Immerman (see Immerman, 1999) to log-
ically describe the complexity class NLOGSPACE. Tiede and Kepser
(2006) have recently shown that FO(TC) is more expressive than MSO
over trees. The statement remains true even if one only considers de-

terministic transitive closures.
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