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ABSTRACT. A general principle for grammars for languages is that theggt useinite means
to produce the infinitely many structures of the languagekeithe ternproductionis under-
stood algebraically, there are at least two notions of figiés involved. Firstly in each set of
structures each structure is generated, i.e., the resfititefly many applications of operators.
Secondly, the set of operators as such is §ilsite. For algebraic theories, this is eo ipso the
case. But there are linguistic frameworks that are not gimer but rather licensing linguistic
structures such as Head-Driven Phrase Structure Gramn@B-drheory. Within these, struc-
tures are not generated. Rather only general propertiednoiSaible structures are stated. But
these structures must be provided somehow. Thus one mafytheke are algebraic approaches
to licensing theories.

We show here that HPSG is non-algebraic in the following seff$here is no finite family of
operations such that the members of every finite set of featructures can be constructed
by this finite family of operations. We also show that HPSQuea structures are abstractly
recognisable in the sense that for every set of finite HPStareatructures there exists a (many-
sorted) algebra witfinite sort sets of infinitely many operations such that every feagtructure

in that set is recognised by the algebra (seen as an abgitaot@on). In other words, the first
finiteness demand can be fulfilled, the second one cannot.

9.1 Introduction

Formal frameworks for linguistic theories like tree adjomgrammars, minimalist
grammars, and context-free tree grammars belong to thaaemeenumerative
paradigm (Pullum and Scholz, 2001). This paradigm can bsidered as a branch
of applied recursive functions theory. Languages, undsnfilew, consist of a set
of finite concrete structures that are enumerable by anitiguc device. The
Chomsky hierarchy and its refinements is one of the sucomisssof this approach
towards a general syntactic meta-theory.

Recent years have seen the emergence of a competing paratiignis not so
much inspired by a general theory of algorithms but by mettaeleloped within
finite model theory (Ebbinghaus and Flum, 1995). Accordioghis approach
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languages are to be viewed as sets of (finite) relationattsires that satisfy a
family of constraints which are stated in a suitable log&gécification language.
Grammatical structures are not the result of an enumerativeess, but they com-
prise those structures that satisfy all the constraintslahguage. Prominent in-
carnations of this paradigm are the Government and Bindimgofy (Chomsky,
1981) and Head-driven Phrase Structure Grammar (HPSGa(Belhd Sag, 1987,
1994)).

What has not been noticed before is the fact that the difterdretween the gen-
erative and the model-theoretic licensing paradigm isljgdled by a concomitant
distinction of data structures. To put it in a nutshell: wdas the notion of an
initial abstract data structure is fundamental for the gatnee-enumerative frame-
work, the dual notion of a final abstract object structurg/gla similar role within
the model-theoretic framework. The definition of an initidlstract data structure
specifies in which ways elements of that structure may bergeaw The central
concepts of this type of data are those of an algebra of atsignaf a congruence
relation and of induction. Familiar examples are providgdstsings and trees.
The dual type of data is characterised by the corresponditigns of coalgebra,
bisimulation relation and coinduction. The elements of alfobject structure are
not described in terms of a representation through theursae buildup, but via
the attributes and methods that characterise their balmavithe most prominent
example for such a structure is that of a labeled graph.

The difference between these two types of data structuréseiseason for the
association of strings and trees with the generative-erative paradigm and of
labeled graphs with the model-theoretic paradigm of syitd@meworks. Trees
can be uniquely characterised by specifying their hieliaatistructure, they can be
enumerated by means of a production system and they can hetdemh abstract
automaton. For graphs no suitable notion of finite automatmmbeen proposed.
Similarly, graph grammars do not generate their output irag that is patterned
by an independently given hierarchical structure which idae intrinsic to this

data type.

The notion of generation often entails the existence of defiget of operators
such that every element of the structure under consideritithe result of finitely
many applications of these operations on a finite set of eotst(nullary opera-
tions). One way of interpreting this technical statemeribisay that a grammar
constructs a language wiflmite means, where there are two aspects of finiteness
to be distinguished. Firstly, each structure can be cocigtduby finitely many
applications of operations (this is the notion of generativalgebra). Secondly,
there are only finitely many different operators. These eriigs may be desirable
for licensing theories as well. The fact that the data stmest underlying licens-
ing theories are graphs does not as such preclude such &ifiys#auderon and
Courcelle (1987) present an algebraic approach to graplefinying a (generally
infinite) set of graph operations such that every finite gregoin be constructed by
finitely many applications of these graph operations. Taromsisting of graph op-
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eration symbols are grapgxpressionsthey describe how a graph is constructed.
The value of such an expression is of course the graph theraotisn of which

it describes. Thus there is a constructive, algebraic @mbréo graphs. The im-
portant question is then, whether the set of graph operat®ded for a family of
grammatically well-formed structures is finite or not.

For the particular licensing theory HPSG we will show herat tthe classes of
finite graphs defined by a finite HPSG signature and grammandeed such that
they cannot be generated by a finite set of graph operatiom® s&t of graph
expressions for finite HPSG graphs can in general not be gterkby a regular or
even context-free tree grammar. This result is independietite particular logic
chosen for HPSG. It just relies on standard assumptions @Gistgnatures and
grammars, as they are spelled out, e.g., by Pollard and 98¢).1

We also show that HPSG is abstractly recognisable. This sntt for every
set of HPSG feature structures defined by a grammar theres ex(snany-sorted)
algebra over the possibly infinite set of graph operationsrevlall sort sets ar-
nite. This algebra can be seen as an abstract automaton. Thesdotoisiabstract,
because there are infinitely many graph operations and heficigely many dif-
ferent sorts. In other words, the states of the automatosated. For each sort,
there are only finitely many states, but the set of all statedll sorts is infinite.
This is why the automaton cannot really be used for recagnitr generation. The
notion recognisableemains abstract. But at least this finiteness property ean b
established for HPS&.

9.2 HPSG-Style Feature Structures

The data structures underlying HPSG are so-called feattretgres. The proba-
bly simplest approach to them, and the one we will follow hés¢o regard them
as relational structures. On this view, sorts are unaryigages and features are
binary functional predicates. HPSG feature structuresregeired to beotally
well-typedand sort resolved Sort-resolvedness, demanding that the sorts parti-
tion the universe, is of no particular relevance here. \Wgledness restricts the
admissible correlations between sorts and features. Eatkisscorrelated with a
set of admissible features. And for each such feature tisesa indication listing
the admissible set of sorts on the target ndeal well-typedness additionally re-
quires each admissible feature to be present. Thus a sigrfattHPSG is a triple
A= (s,¥,A) wheres is a set of sorts (unary predicate symbols),is a set of
features (binary predicate symbols), ahds x 7 — [0($) is anappropriateness
function We will restrict our attention tdinite signatures, i.e., signatures with
and # being finite sets. The restrictions imposed by a finite HP$@ature can

INote that the fact that each single finite graph can be cartstitby finitely many applications
of graph operations does in no way imply that every (posdififiyite) setof feature structures is
abstractly recognisable.
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be expressed as a first-order sentenage as was shown by Aldag (1997) in his
master’s thesis:

XVses S(X)

A /\Sl,Szes,Sﬁé& \V/X_‘(S.L(X) A &(X))

ANees V%Y, Z((F(XY) AF(%,2)) —y=2)

ANses er AsF)20TX(S(X) — 3y F(X,Y) AVgease) S(Y))
ANscs per AsF)=0 VX(S(X) — =3y F(x,Y))

One would now expect that a grammar is a first-order sentevesetioe signature.
But a typical HPSG principle is somewhat simpler. It is a leaol combination
of path equality expressions and sort statements. A pathliggexpression is a
formula of the following kind:

ayi, .. -Yn3z,... Z Fu(X,y1) A=  AFn(Yn-1,¥n) A
Ga(%,z1) A+ AGk(Z-1,2) AYn = %

whereF,...,F,,Gs1,...,Gk € . Such a formula stipulates that the two feature
pathsF; ... F, andG;... Gk lead to the same node. A sort statement is a formula of
the following kind:

g, X FOGX) A AF (Xn—1,%0) A S(Xn)

whereFy,...,F, € F andSe€ s. It states that the node at the end of the path
F1...F, is of sortS. An HPSG principle is a boolean combination of these kinds
of formulae with the free variablebeing universally quantified since the principle
is to be true at every node. A grammar is simply a conjunctibprimciples. We
note that for the purpose of the present paper it is immaiéaagrammar is of the
limited formula class just described or if it is any first-erdentence.

A relational structurell over a signaturé\ is a model for a grammar, iff 2 =
ap AT. We will only considerfinite structures. This is linguistically justified if
one keeps in mind that such a structure is the linguisticyaigbf an utterance. It
seems unclear what an infinite analysis is supposed to mean.

The two most prominent alternatives for a formalisation 813G are feature logics
(see, e.g., Rounds (1997) for a survey) or certain modat$q@ee, e.g., (Blackburn
and Spaan, 1993; Kracht, 1995)). Since proponents of btgmatives typically
propose a weak logic, there often is a translation into firder logic available.
For the particular example of Speciate Reeantrant Logic iog K1989) this was
shown by Aldag (1997). For modal logics, several such tedizsi methods are
provided by Ohlbach, Nonnengart, de Rijke, and Gabbay (001

9.3 Graphs as Logical Structures

Almost from the beginning, feature structures were comsi@s particular types
of graphs. Graph-theoretically they are rooted directguelgraphs where the sorts
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are unary edges. We will now define hypergraphs followingpttegosal by Cour-
celle (1990a,b) and quoting it freely where appropriatac&ill the graphs we are
dealing with are hypergraphs, we will omit the prefigoer- A signature or ranked
alphabetz is a finite sel. of labels together with a functiop: L — IN equipping
each label with an arity. In the case of HPSG, the signatunsists of the unary
sort symbolss and the binary feature symbafs.

Definition 1 Let X be a signature. Aoncrete graphs a quintupleG = (V, E, lab,
inc, prt) where

— V is a set whose elements are the vertices of the graph;

— E is a set whose elements are the edges;

— lab: E — L is an edge labelling function;

— inc: E — V* associates with each edgehe sequence of its vertices, a se-
quence of lengtip(lab(e));

— prt is a sequence M* of vertices, thegorts The length of this sequence is
the type of the grapfe.

Thus a concrete graph consists of a set of vertices and a tdialled edges be-
tween the vertices. Vertices are labelled by unary edgesrtfo$§ HPSG turns out

to be a unary labelled edge that is attached to a vertex. Tgeedfan edge is

the arity of its label, i.etypge) = p(lab(e)). The ports are needed for technical
purposes only. Ayraphis the equivalence class of all isomorphic concrete graphs.
The set of graphs over a signaturés denoted byss.

A graph isfinite, iff both V andE are finite. As explained before, we restrict our
attention to finite graphs. This definition of graphs is veengral. Edges are for
example not restricted to be binary, they may connect mane tivo vertices. For
a model of HPSG-style feature structures, this generdityertainly not needed.
Rather the subset of graphs that are HPSG-style featuretistes aredirected
multi graphs Multi graphs are graphs where the rang@ @ the set{0,1,2}, i.e.,
each edge is at most binary. A graph is directed if the rangeca$ generally not
symmetric, i.e., edges have a start and an end vertex. HPB@destructures are
also rooted, but this property is of no relevance for us.

Bauderon and Courcelle (1987) define three families of grgg@rations to turn a
set of graphs into a many-sorted algebra of graphs. (Otlodr snmplete families
of graph operations are presented, e.g., by EngelfrietA188Courcelle (1997).)
The first family of operations idisjoint sum Let G andH be two graphs of types
nandn’. We can assume their sets of vertices and edges to be disibienG © H
is (Vg UV, Eg U Ey,labg Ulaby,incg Uincy, prtg”~prty ) of typen+n'.

The second operation is tipert redefinition This operation renames or “forgets”
ports. IfGis a graph of typa anda : {1,... .k} — {1,...,n} then the graph after
port redefinition isVg, Eg, labg, incg, prtg(a)) of typek.
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The third operation is th@ort fusion It fuses port vertices, i.e., the operation
identifies groups of vertices. For every equivalence matel on the sef1,...,n}
there is a mappindug taking a graphG of typen and returningG’ that is obtained
from G by identifying the ports that are in the same equivalencesatdiR.

Note that each of the three families of operations contaémsicherably many oper-
ators. The set of all graphs together with these three fasndf operations forms a
many-sorted algebra, where the sorts are just the types gfiphs. Bauderon and
Courcelle (1987) also define a (many-sorted) algebra obfleebgraph expression

G £ in the following way. It is the term algebra of the (sortedemtion symbols
of the above described graph operations together with fleMiag constants: 0
(denoting the empty graph), 1 (denoting the graph congisifra single vertex)a

for each labeh € L (denoting the graph consisting of a single edge of {y(&® of
label a together with itsp(a) vertices). An element of this term algebra is called
a graph expressianlt can and should be seen as an instruction for construeting
graph. The graph is the value of the expression: Since thed&gebra is the free
algebra of this signature of graph operations there existigue homomorphism
from the algebra of graph expressions to the algebra of grapime value of a
graph expression is exactly the value of this homomorphisiis.now interesting
to see that the homomorphism is surjective.

Proposition 2 (Bauderon and Courcelle, 198&Yery finite graph is the value of a
graph expression.

A graph expression is a term, hence a tree. We can therefergraph expressions
to define particular sets of graphs.

Definition 3 A set of graphs igontext-fredff the set of graph expressions denot-
ing this set is regular. A set of graphsdgtended context-fraéf the set of graph
expressions denoting it is context-free.

As usual, a set of trees is regular iff it is generated by aleeguee grammar or,
equivalently, accepted by a tree automaton. A set of treeeritext-free iff it is

generated by a context-free tree grammar (Rounds, 197@) ndton ofcontext-

freenessfor graphs stems from context-free graph grammars such perégge
replacement grammars. It is well known that a set of graphkdadanguage of
a context-free graph grammar just in case it is the value eQalar set of graph
expressions (Lautemann, 1988).

We need two notions for the size of a graph. The first avidih, is roughly the
size of the signature of the expression for that graph. Tberskonefreewidth is
a measure on how tree-like a graph is.

Definition 4 Letg be a graph expression. Thédth wd(g) is the maximal sort of
a symbol of the graph expression algebra occurringy inhewidth of a graphG is
wd(G) := min{fwd(qg) | val(g) = G}.
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Definition 5 Let G be a graph. Aree decompositionf G is a pair(T, f) whereT

is an unrooted unoriented tree ahdVy — O (Vi) is @ mapping such that

D) Ve =U{f(i) [T eVr}

(2) for every edge of G there is a sef (i) such that all vertices agfare inf(i);
3)if ve f(i)n f(j), thenv e f(Kk) for everyk belonging to the unique loop-free
path fromito jinT.

The width of a tree decomposition is definedraaX |f (i)| | i € Vr} — 1, and the
treewidthof G is the smallest width of a tree decompositionGof

As was shown by Courcelle, the treewidth of a directed muktipy provides a
lower bound for its width.

Proposition 6 (Courcelle, 1992) et G be a finite directed multi graph. Then
twd(G) < wd(G).

A natural and indeed very powerful choice of a logical larggudor graphs is
monadic second-order logic of vertices and and edges,YMBonadic second-
order logic extends first-order logic by the addition of smiables and quantifica-
tion over set variables. Thus the language offers existeatid universal quantifi-
cation over vertices, edges, sets of vertices, and setggeedlany sets of graphs
can be defined in MSsuch as, e.g., planar graphs, 3-colourable graphs, orgraph
with a Hamiltonian cycle. The translation of the appromess function and a
grammar of a finite HPSG signature into MiS a simple task, in which no second
order quantification is needed.

A setC of graphs of sorh is calledabstractly recognisabléff there exists a many-
sorted algebr&l over the possibly infinite signature of graph operation fittite
universes (sort sets), a homomorphiemg £ — 2, and a finite subsdtS of A,
such thaC = h~1(FS). The triple(h,2(,FS) is called an automaton, the $e8is
the set of final states. The homomorphibns uniquely given due to the fact that
G E is the free algebra over the signature of graph operations.

Proposition 7 (Courcelle, 1990bEvery M$-definable set of graphs is abstractly
recognisable.

9.4 Graph Properties of HPSG Feature Structures

We can now present a finiteness result for HPSG, namely thatfth set of HPSG
feature structures defined by a grammar there exists a ghgelra over a possibly
infinite signature of operations where each sort set is fgutsh that each feature
structure is generated by this algebra. In other words
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Theorem 8 For every finite HPSG signature and grammar, the set of mookels
that signature and grammar is abstractly recognisable.

As shown in the previous sections, every finite HPSG sigeadnd every grammar
are MS-definable. So, leap be the M$-sentence defining the signature dnd
be the M$-sentence defining the grammar. By Proposition 7, the setolets of
aa AT is abstractly recognisable.

This finiteness result is quite a weak one, because due tofthée signature there
are infinitely many sort sets or universes. That means teadltfebra as a whole is
not finite. It is only the universe for each sort that is finite.

It would therefore be desirable to obtain a stronger fingsnmesult, namely one in
which the whole algebra is finite. But such a result cannotdtabéished, as we
will show now. We demonstrate that there is a set of finiteuieastructures such
that there is no graph algebra witliiite graph operator signature which generates
this set. To do so, let us consider a special set of graphsglgagrids. Grids are
special types of planar graphs. They are the result of glagares in lines and
columns. forming a rectangular shape. An example ofxa36grid is given in
Figure 9.1.

oy oy oy oy oy oy oc
U U U U U U U
o5 R o5 R o5 R o5 R o5 R o5 R o
U U U U ) ) U
o R o R o R o R o R o R o
U U U U U U U
o R o R o R o R o R o R o

Figure 9.1: A 6x 3 grid.

It is not difficult to see that HPSG formalisations allow thenstruction of grids.
Consider the following signaturgs, u,r,c}, {U,R}) with the appropriateness con-
ditions

s U su u R uc

s R sr r U r,c

wheres U su reads sors has obligatory featurd and the sort at the end vertex
of U may bes or u. We suppose the grammar to be empty. Thegsgt of all
finite graphs that are models of this signature containsratefigrids such as the
one in Figure 9.1. It does, of course, contain many more grépdt are not grids.
But this is not of importance for us. If desired, the set ofpifpscan be restricted
by adding principles so that only grid-like graphs are ingbe Indeed, Courcelle
(1997) shows how to define finite grids in monadic second+daigc.
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Theorem 9 The setg ® has unbounded width.

This is shown as followsg ® contains all finite grids. The treewidth of anx k

grid is min(n,k) (see (Bodlaender, 1998)). Therefore there is no bound on the
treewidth ofg ® . Since all feature structures are multi graphs, there isrbpdsi-

tion 6 no bound on the width af % , either.

This theorem expresses that the signature for the grape®sipns generating .
is infinite.

Proposition 10 The sets ® of graphs is neither context-free nor extended context-
free.

This is a simple consequence of the fact that every tree gearhas a finite set of
productions. Thus the set of operators in terms is finite. tBetwidth of g ® is
unbounded.

Corollary 11 HPSG feature structures are in general neither contexe-frer ex-
tended context-free.

Unfortunately this also means that standard techniques tnoiversal algebra or
automata theory cannot be applied. It is a philosophicastiues whether graphs
similar to grids should be regarded as appropriate for Istguanalyses. There
are good reasons to believe that HPSG grammarians do noghidvike feature

structures in mind when they think about models of their grears. From the
point of view of a licensing theory this would mean that aiddial principles have
to be added that generally state desirable graph propeitihe intended model.
But most logics for HPSG, including (R)SRL and modal logase not powerful

enough to formulate principles that exclude grid-like €eatstructures (and only
these).

There is an interesting analogon in formalisations of G8gtly. Rogers (1998)
showed that under the assumption of free indexation, amgssan that is standard
in this theory, the construction of grids cannot be exclueiduker.

One obvious way to remedy the problem for HPSG is to demand adéss of

models to be generable by a context-free graph grammar. &delmand cannot
be postulated as a principle but would have to be extrinsitinferesting conse-
quence of such a demand would be that treebanks for HPSG beuyderied in

timelinear in the size of the treebank using M8s a query language.
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