
Algebraic Methods in Language Processing AMiLP-3,
Anton Nijholt and Giuseppe Scollo (eds.), 2003.

A Note on the Complexity of Optimality Theory

Stephan Kepser and Uwe Mönnich∗

Dept. of Linguistics, University of Tübingen, Germany

{kepser,um}@sfs.uni-tuebingen.de

Abstract

Optimality theory (OT), introduced by Prince and Smolensky (1993), is a linguistic framework
in which the mapping of one level of linguistic representation to another is based on rules
and filters. The rules generate candidate expressions in the target representation, which are
subsequently checked against the filters, so that only those candidates remain that survive this
filtering process. Germain to OT is the fact that filters or constraints are violable and ranked.
Thus a candidate expression may violate a constraint, as long as alternative candidates violate
more constraints or higher ranked constraints. An expression is optimal, if it violates the
least number of lowest ranked constraints. Frank and Satta (1998) and Wartena (2000)
have shown that these principles of OT can be fruitfully modeled using techniques from
formal language theory. Both model the generator relation as a rational relation over regular
languages and the constraints as regular languages; in (Frank and Satta, 1998) these are string
languages, and in (Wartena, 2000) they are tree languages. We show here that generators can
be extended to linear frontier-to-root tree transducers on linear context-free tree languages –
with constraints being regular tree languages – while the computation of optimal candidates
can still be performed using finite state techniques (over trees).

Keywords: Optimality theory, context-free tree grammar, finite state techniques

1 Introduction

Optimality theory (OT henceforth) has been introduced by Prince and Smolensky (1993) originally
as a model for generative phonology. In recent years, this approach has been applied successfully to
a range of syntactic phenomena, and it is currently gaining popularity in semantics and pragmatics
as well. It is based on the idea that a mapping from one level of linguistic representation to another
should be described in terms of rules and filters. The novel contribution of OT is that filters – or,
synonymously, constraints – are ranked and violable. Thus the result of a rule-based generation
process may still be acceptable although it violates certain constraints as long as other results
violate more constraints or constraints that are higher ranked.

In other words, the rules generate a set of candidates that are competitors. On this set, the
constraints are applied in the order of their ranking starting with the highest ranked constraint.
A candidate may violate a constraint more than once. The application of the highest ranked con-
straint assigns each candidate the number of violations of that constraint. Some of the candidates
are now optimal with respect to this constraint in the sense that they violate the constraint the
fewest times. These, and only these, are retained for the next round of constraint application. In
each round, the current constraint is applied to the set of candidates remaining from the previous
rounds. And only those candidates that are optimal with respect to the current constraint make
it into the next round. In the end, after applying all constraints, a set of candidates is reached
which is optimal with respect to the given ranking of the constraints. The method is therefore
comparable to a high jump competition in athletics.

∗This research was partly funded by a grant of the German Science Foundation (DFG SFB 441-2).

153



Frank and Satta (1998) show that certain classes of OT-systems can be handled by finite state
techniques. Their approach is influenced by ideas from computational phonology, the original
field of application for OT. In this view, the generation of candidates is a relation on strings, and
this relation is defined by a finite state transducer. In order to also render constraints by finite
state automata, two restrictions have to be made. The first one is that constraints have to be
binary, that is to say, each constraint assigns each candidate either 0 or 1. The second restriction
demands constraints to be output constraints. An output constraint is a constraint that assigns a
number to a candidate pair purely on the base of its output. Under these restrictions, constraints
can be rendered as regular string languages over the output. The aim of the paper by Frank and
Satta (1998) is to provide a modularity result for the complexity of an OT-system in the following
sense. Suppose that the set of candidates is given by a finite state transducer and all constraints
are expressable by regular languages. Then the whole OT-system can be rendered by finite state
techniques and is no more complex than its components. The success of the approach by Frank
and Satta is based on well-known closure properties of regular string languages.

Wartena (2000), noting that these closure properties extend to regular tree languages, demon-
strates how the approach of Frank and Satta can be extended from strings to trees. The set of
candidates, now, is a binary relation on trees that is defined by means of a linear tree transducer.
And binary output constraints are defined by means of tree automata. The use of tree automata
as a way to express constraints in syntax was proposed previously by Morawietz and Cornell
(1997). Based on these assumptions Wartena achieves the corresponding modularity result that
if the components of OT-system are defined by automata on trees then the whole OT-system can
be defined by automata on trees and hence shares the complexity of its components.

For the description of natural language syntax, it is trees that are regarded as the underlying data
structures by most linguists. Therefore the step from string automata to tree automata is certainly
a necessary one. But there are well-known arguments by Shieber (1985) and others that natural
languages are not context-free. In particular, certain aspects of the morphology of Bambara and
the case agreement in Swiss German are mildly context-sensitive. It is therefore arguable that
a simple use of tree automata may not suffice. In a series of papers, Kolb et al. (2003, 2000);
Michaelis et al. (2001); Morawietz and Mönnich (2001) provide a systematic way to render mildly
context-sensitive phenomena in natural language using purely (tree-) regular means. Based on this
approach we show here how to integrate a moderate level of context-sensitivity into an OT-system
while still using extended tree automata techniques.

We propose to define the generator of an OT-system to be a relation on linear context-free tree lan-
guages. This relation is given as a so-called linear frontier-to-root tree transducer (LF-transducer).
Linear context-free tree languages form a proper super class of the regular tree languages, hence
standard automata techniques cannot be applied. We therefore employ a two-level mechanism,
i.e, we apply a technical process called lifting to the linear context-free tree grammar defining the
domain of the generator. And we also lift the LF-transducer. Since the result of lifting the gram-
mar is a regular tree grammar, we can now use automata techniques. Constraints are expressed
as monadic second-order (MSO) formulae over candidate output trees. We think this approach
is more appealing to linguists than using regular tree grammars because logic allows to specify
the constraints in an abstract, grammar-free fashion. If desired, the formulae can be translated
into regular tree languages and vice versa using well known formal languages techniques (Gécseg
and Steinby, 1997). Constraints will also be lifted to match the level of the lifted generator, and
then transformed into tree automata. This allows the computation of optimal candidates on the
lifted level using automata techniques. In order to obtain the optimal candidates on the intended,
original level, we apply another automaton, a macro tree transducer equivalent to an MSO trans-
duction to be defined below, to undo the translation step introduced in the lifting. We have thus
shown that optimal outputs of an OT-system can be computed using finite state techniques over
trees even in the case where the generator comprises mildly context-sensitive tree languages.

After reviewing of basic concepts from algebra, logic, grammar and automata theory in the next
section we introduce and formalise the concepts of an OT-system in Section 3. Section 4 reports

154



the constructions and results by Frank and Satta (1998) and Wartena (2000) that we build upon.
In Section 5 we present our own two-level approach to the formalisation of OT.

2 Preliminaries

2.1 Basic Algebraic Definitions

Let S be a finite set of sorts. An S-signature is a set Σ given with two mappings α : Σ → S∗ (the
arity mapping) and σ : Σ → S (the sort mapping). The length of α(f) is called the rank of f ,
and is denoted by ρ(f). The profile of f in Σ is the pair (α(f), σ(f)). The elements of Σε,s are
also called constants (of sort s).

A Σ-algebra is an pair A = 〈(As)s∈S , (f)f∈Σ〉 where As is a nonempty set for each s ∈ S, called
the domain or universe of sort s of A, and f : Aα(f) → Aσ(f) is a total function for each f ∈ Σ.
(For a sequence µ = (s1, . . . , sn) in S+, we let Aµ := As1

×As2
× · · · ×Asn

.) A Σ-algebra is finite
iff the carriers As for each s ∈ S are finite.

In case S is a singleton set {s}, i.e., in case Σ is a single-sorted or ranked alphabet (over sort s),
we usually write Σn to denote the (unique) set of operators of rank n ∈ IN. In later sections of
the paper we will mainly use the single-sorted case of alphabets. We will indicate the need for
many-sorted alphabets where necessary.

Let S be a set of sorts, Σ a signature, and A and B two Σ-algebras. A family of functions
hs : As → Bs (for each s ∈ S) is called a Σ-homomorphism iff for all f ∈ Σ of rank k and all
(a1, . . . ak) ∈ Aα(f): hσ(f)(fA(a1, . . . , ak)) = fB(hs1

(a1), . . . , hsk
(ak)).

Of particular interest to us is the algebra TΣ of trees over a single-sorted signature Σ. It is the free
algebra of Σ. The carrier TΣ is defined recursively as follows. Each constant of Σ, i.e., each symbol
of rank 0, is a tree. If f is of rank k and t1, . . . , tk are trees, then f(t1, . . . , tk) is a tree. Operations
in TΣ are syntactic, i.e., if f ∈ Σk and t1, . . . , tk ∈ TΣ then fTΣ

(t1, . . . , tk) := f(t1, . . . , tk). TΣ is
the free or initial algebra in the class of all Σ algebra, i.e., for each algebra A there exists a unique
homomorphism hA : TΣ → A. This homomorphism is the evaluation of a term in A.

A tree language L ⊆ TΣ is a subset of TΣ. With each tree t ∈ TΣ we can associate a string s ∈ Σ∗
0

by reading the leaves of t from left to right. This string is called the yield of t, denoted yd(t). The
yield of a tree language L is defined straightforwardly as yd(L) = {yd(t) | t ∈ L}.

2.2 Basic Tree Grammar Definitions

A context-free tree grammar (CFTG) is a quintuple Γ = 〈Σ,F , S,X, P 〉 where Σ and F are
ranked alphabets of inoperatives and operatives, S ∈ F is the start symbol, X is a countable
set of variables, and P is a finite set of productions. Each production p ∈ P is of the form
F (x1, . . . , xn) → t for some n ∈ IN, where F ∈ Fn, x1, . . . , xn ∈ X and t is a tree over Σ ∪
F , {x1, . . . , xn}. The grammar is linear iff each variable occurs at most once in the right hand
side of each rule. Intuitively, an application of a rule of the form F (x1, . . . , xn) → t “rewrites” a
tree rooted in F as the tree t with its respective variables substituted by F ’s daughters.

A CFTG Γ = 〈Σ, F, S,X,P〉 with Fn = ∅ for n > 0 is called a regular tree grammar (RTG). Since
RTGs always just substitute some tree for a leaf-node, it is easy to see that they can only generate
recognisable sets of trees, a forteriori context-free string languages (Mezei and Wright 1967). If Fn

is non-empty for some n 6= 0, that is, if we allow the operatives to be parameterised by variables,
however, the situation changes. CFTGs in general are capable of generating sets of structures,
the yields of which belong to the subclass of context-sensitive languages known as the indexed
languages.

Let us illustrate the above by means of an example. The following CFTG generates the mildly
context-sensitive language anbncndn.

155



Example 1 Consider the CFTG Γ = 〈{a, b, c, d, ε, St, S
0
t }, {S, S

′, S1, S2, a, b, c, d}, S′, {x},P〉 with
P given as follows S′ −→ S(ε) a −→ a

S(x) −→ S1(S(S2(x))) b −→ b

S(x) −→ S0
t (x) c −→ c

S1(x) −→ St(a, x, d) d −→ d

S2(x) −→ St(b, x, c)

An example of a tree generated by this grammar is shown in Figure 1.

St

a St

a S0
t

St

b St

b ε c

c

d

d

Figure 1: Sample tree

Let Γ be a CFTG. For every tree t ∈ L(Γ), there is a set of sequences of applications of grammar
rules that generate t. These sequences may differ in more than just the order of rule application,
a tree can have several different derivations.

If Γ is a regular tree grammar, then the language generated by Γ is called a regular tree language.

2.3 Basic Automata-Theoretic Definitions

For regular tree languages there exists an automaton model that corresponds to finite state au-
tomata for regular string languages. Let Σ be a signature. A deterministic frontier-to-root tree
automaton is a pair (AΣ, F ) where AΣ is a finite Σ-algebra and F ⊆

⋃
s∈S As is the set of final

states. A tree t ∈ TΣ is recognised by (AΣ, F ) iff hA(t) ∈ F , i.e., the evaluation of the term t in
the automaton ends in a final state. On an intuitive level, a bottom-up tree automaton labels the
nodes in a tree with states starting from the leaves and going to the root. Suppose n is a node
in the tree and f is the k-ary function symbol at node n and the k daughters of n are already
labelled with states q1, . . . , qk, and furthermore fA(q1, . . . , qk) = q is true in A then node n can
be labelled with state q. A tree is accepted if the root can be labelled with a final state. Since we
will only consider deterministic bottom-up tree automata in this paper, we will henceforce just
call them tree automata for brevity.

The language accepted by a tree automaton (A, F ) is the set {t ∈ TΣ | hA(t) ∈ F}. We will now
report some results about the theory of regular tree languages. For more information, consult the
work by Gécseg and Steinby (1984, 1997). A tree language L is regular if and only if there is a
tree automaton that accepts L. Regular tree languages are closed under union, intersection, and
complement. There are corresponding constructions for tree automata.

Tree automata can be generalised to automata that transform one tree into another, so-called tree
transducers. The following exposition on tree transduction is taken from (Gécseg and Steinby,
1997). Let Σ and Ω be two (single-sorted) signatures. A binary relation τ ⊆ TΣ × TΩ is called a

156



tree transformation. A pair (s, t) ∈ τ is interpreted to mean that τ may transform s into t. We can
speak of compositions, inverses, domains, and ranges of tree transformations as those of binary
relations. With each tree transformation τ ⊆ TΣ×TΩ one can associate a translation of the string
languages {(yd(s), yd(t) | (s, t) ∈ τ}. We will now define frontier-to-root tree transducers.

Definition 2 [F-Transducer] A frontier-to-root tree transducer (or F-transducer) consists of a
quintuple A = (Σ,Ω, Q, P, F ) where Σ and Ω are signatures; Q is a finite set of states, each
element of Q is a unary function; F ⊆ Q is the set of final states ; and P is a finite set of
productions of the following type:

f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm))

where f ∈ Σm, q1, . . . , qm, q ∈ Q, t(x1, . . . , xm) ∈ TΩ(x1, . . . , xm).

The transformation induced by an F-transducer is defined as follow. We write QTΩ for the set
{q(t) | q ∈ Q, t ∈ TΩ} and regard QTΩ as a signature in which each element q(t) ∈ QTΩ is
seen as a constant. Let s, t ∈ TΣ∪QTΩ

be two trees. It is said that t can be obtained by a
direct derivation from s in A iff t can be obtained from s by replacing an occurrence of a subtree
f(q1(t1), . . . , qm(tm)) (with f ∈ Σm, q1, . . . , qm ∈ Q, t1, . . . , tm ∈ TΩ) in s by q(t(t1, . . . , tm), where
f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm)) is a production from P . If s directly derives t in A then
we write s⇒A t. The reflexive transitive closure s⇒∗

A t is the derivation relation.

Intuitively, an F-transducer traverses a tree s from the leaves to the root rewriting it at the same
time. In a single derivation step we consider a node n in s with label f where all the daughter
nodes are already transformed into trees of TΩ and each daughter node is in some state qi. Then
we replace the subtree of node n with the tree t from the production where the place holder
variables of t are replaced by the trees of the daughter nodes of n. The root of this subtree is put
into state q.

The relation
τA = {(s, t) | s ∈ TΣ, t ∈ TΩ, s⇒

∗
A q(t) for some q ∈ F}

is the transformation relation induced by A. A relation τ ⊆ TΣ × TΩ is an F-transformation
if there exists an F-transducer A such that τ = τA. For a tree language L ⊆ TΣ we define
A(L) = {t ∈ TΩ | ∃s ∈ TΣ with (s, t) ∈ τA}.

A production f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm)) is called linear if each variable x1, . . . , xm

occurs at most once in t. An F-transducer is linear if each production is linear. We denote a
linear F-transducer by LF-transducer. There are two important results about LF-transducers (see
(Gécseg and Steinby, 1997)): LF-transducers are closed under composition. And if L is a regular
tree language and A is an LF-transducer, then A(L) is again regular. Hence LF-transducers are
the counterpart on trees of finite state transducers on strings.

We will now introduce macro tree transducers. Their states are complex objects, and they allow
to pass parameters – which contain a limited amount of context information from the part of the
input tree we have already seen – into the RHSs. We formalise these new RHSs as follows. Let Σ,
Ω, and Q be ranked alphabets and n,m ≥ 0. The set of right hand sides RHS(Σ,Ω, n,m) over Σ
and Ω with n variables and m parameters is the smallest set rhs ⊆ TΣ∪Ω(Xn ∪ Ym) such that

1. Ym ⊆ rhs

2. For ω ∈ Ωk with k ≥ 0 and ϕ1, . . . , ϕk ∈ rhs, ω(ϕ1, . . . , ϕk) ∈ rhs

3. For q ∈ Qk+1 with k ≥ 0, xi ∈ Xn and ϕ1, . . . , ϕk ∈ rhs, q(xi, ϕ1, . . . , ϕk) ∈ rhs

The productions of MTTs contain one piece of “old” information (a symbol from the input alphabet
with the appropriate number of variables) and a number of context parameters.

157



Definition 3 [Macro Tree Transducer] A macro tree transducer (MTT) is a quintuple M =
〈Q,Σ,Ω, q0, P 〉 with Q a ranked alphabet of states, ranked alphabets Σ and Ω (input and output),
initial state q0 of rank 1, and a finite set of productions P of the form

q(σ(x1, . . . , xn), y1, . . . , ym) −→ t

where n,m ≥ 0, q ∈ Qm+1, σ ∈ Σn and t ∈ RHS(Σ,Ω, n,m).

The productions p ∈ P of M are used as term rewriting rules in the usual way. The transition

relation of M is denoted by
M

=⇒.

The transduction realized by M is the function {(t1, t2) ∈ TΣ × TΩ | q0(t1)
M

=⇒
∗

t2}

Generally, a little care has to be taken in the definition of the transition relation with respect to
the occurring parameters yi. Derivations are dependent on the order of tree substitutions. Inside-
out means that trees from TΩ have to be substituted for the parameters whereas in Outside-in
derivations a subtree must not be rewritten if it is in some context parameter. Again, as for
context-free tree grammars, neither class of derivations contains the other. Since we are only
dealing with simple MTTs in our approach, all modes are equivalent and can safely be ignored.

An MTT is deterministic if for each pair q ∈ Qm+1 and σ ∈ Σn there is at most one rule in P

with q(σ(x1, . . . , xn), y1, . . . , ym) on the LHS.

An MTT is called simple if it is simple in the input (i.e., for every q ∈ Qm+1 and σ ∈ Σn, each
x ∈ Xk occurs exactly once in RHS(Σ,Ω, n,m)) and simple in the parameters (i.e., for every
q ∈ Qm+1 and σ ∈ Σk, each y ∈ Ym occurs exactly once in RHS(Σ,Ω, n,m)). The MTTs
discussed in the remainder of the paper will all be simple.

Note that if we disregard the input, MTTs turn into context-free tree grammars.

2.4 Basic Logical Definitions

After these automata-theoretic notions, we briefly present those related to monadic second-order
(MSO) logic. MSO logic is the extension of first-order predicate logic with monadic second-
order variables and quantification over them. In particular, we are using MSO logic on trees
such that individual variables x, y, . . . stand for nodes in trees and monadic second-order ones
X,Y, . . . for sets of nodes (for more details see, e.g., Rogers (1998)). It is well-known that MSO
logic interpreted on trees is decidable via a translation to finite-state (tree) automata (Doner,
1970; Thatcher and Wright, 1968). The decidability proof for MSO on finite trees gives us also
a descriptive complexity result: MSO on finite trees yields only recognisable trees which in turn
yield context-free string languages. These results are of particular interest, since finite trees are
clearly relevant for linguistic purposes, and therefore form the basis for our work.

The following paragraphs go directly back to Courcelle (1997). Recall that the representation
of objects within relational structures makes them available for the use of logical description
languages. Let R be a finite set of relation symbols with the corresponding arity for each r ∈ R

given by ρ(r). A relational structure R = 〈DR, (rR)r∈R〉 consists of the domain DR and the

ρ(r)-ary relations rR ⊆ D
ρ(r)
R . In our case we choose a finite tree as our domain and the relations

of immediate, proper and reflexive dominance and precedence.

The classical technique of interpreting a relational structure within another one forms the basis
for MSO transductions. Intuitively, the output tree is interpreted on the input tree. E.g., suppose
that we want to transduce the input tree t1 into the output tree t2. The nodes of the output tree
t2 will be a subset of the nodes from t1 specified with a unary MSO relation ranging over the
nodes of t1. The daughter relation will be specified with a binary MSO relation with free variables
x and y ranging over the nodes from t1. We will use this concept to transform the lifted trees into
the intended ones.

158



Definition 4 [MSO transduction] A (non-copying) MSO transduction of a relational structure R
(with set of relation symbols R) into another one Q (with set of relation symbols Q) is defined to
be a tuple (ϕ, ψ, (θq)q∈Q). It consists of the formulae ϕ defining the domain of the transduction in
R and ψ defining the resulting domain of Q and a family of formulae θq defining the new relations
q ∈ Q (using only definable formulae from the “old” structure R).

The result which gives rise to the fact that we can characterise a non-context-free tree set with
two devices which have only regular power is stated in Courcelle (1997). Viewing the relation
of intended dominance defined later by a tree-walking automaton as the cornerstone of an MSO
definable transduction, our description of non-context-free phenomena with two devices with only
regular power is an instance of the theorem that the image of an MSO-definable class of structures
under a definable transduction is not MSO definable in general (Courcelle, 1997).

3 Basic Notions of Optimality Theory

Let us make the notions of optimality theory more precise. In the general case, an OT-system
consists of a relation GEN and a finite set of constraints that are linearly ordered. Constraints
may be violated several times. So a constraint should be construed as a function from GEN into
the natural numbers. Thus an OT-system assigns each candidate pair from GEN a sequence of
natural numbers. The ordering of the elements of GEN that is induced by the OT-system is the
lexicographic ordering of these sequences.

Definition 5 An OT-system is a pair (GEN, C) where GEN is a binary relation and C =
〈c1, . . . , cp〉, p ∈ IN is a linearly ordered sequence of functions from GEN to IN. Let a, b ∈ GEN.
We say a is more economical than b (a < b), if there is a k ≤ p such that ck(a) < ck(b) and for all
j < k : cj(a) = cj(b).

Intuitively, an output o is optimal for some input i iff GEN relates o to i and o is optimal amongst
the possible outputs for i. This is expressed by the following definition:

Definition 6 Let O = 〈GEN, C〉 be an OT-system. Then (i, o) is optimal with respect to O iff

1. (i, o) ∈ GEN, and

2. there is no o′ such that (i, o′) ∈ GEN and (i, o′) < (i, o).

It has frequently been observed that in realistic applications, candidate sets may be infinite. Hence,
a brute force complete search algorithm for an optimal output may in general not terminate. Thus
the success of the OT research program crucially hinges on the issue whether there are tractable
evaluation algorithms.

It is obvious that the complexity of the task of finding the optimal candidates for a given OT-
system depends on the complexity of the generator and of the constraints. In the general case,
these will provide a lower bound for the complexity of the OT-system as a whole. The crucial
question is whether an OT-system as a whole may have a higher complexity than the most complex
of its components.

4 Results by Frank and Satta and by Wartena

The first important complexity result in this spirit was proven by Frank and Satta (1998). They
show that certain classes of OT-systems can be handled by finite state techniques. Their approach
is influenced by ideas from computational phonology, the original field of application for OT. On
this view, GEN is a relation on strings, and this relation is defined by a finite state transducer.

159



In order to also render constraints by finite state automata, certain restrictions have to be made.
The first one is that constraints have to be binary, that is to say, each constraint assigns each
candidate from GEN either 0 or 1. If there exists an upper bound on the number of potential
constraint violations for a non-binary constraint, then this non-binary constraint can be translated
into a sequence of binary constraints that has the same filtering effect. Therefore this restriction
is moderate. The second restriction demands constraints to be output constraints. An output
constraint is a constraint that assigns a number to a candidate from GEN purely on the base of
its output, its right hand side element, i.e., if (i, o) and (i′, o) ∈ GEN then c((i, o)) = c((i′, o)).
Under these restrictions, constraints can be rendered as regular string languages over the output
of GEN.

The main theorem of the paper by Frank and Satta (1998) provides a modularity result for the
complexity of an OT-system in the following sense. Suppose that GEN is given by a finite state
transducer and all constraints are expressible by regular languages over the output of GEN. Then
the whole OT-system can be rendered by finite state techniques and is no more complex than its
components. The success of the approach by Frank and Satta is based on well-known closure
properties of regular string languages.

Wartena (2000), noting that these closure properties extend to regular tree languages, demon-
strates how the approach of Frank and Satta can be extended from strings to trees. GEN, now,
is a binary relation on trees that is defined by means of a linear tree transducer. And binary
output constraints are defined by means of tree automata. The use of tree automata as a way to
express constraints in syntax was proposed previously by Morawietz and Cornell (1997). Based on
these assumptions Wartena achieves the corresponding modularity result that if the components
of OT-system are defined by automata on trees then the whole OT-system can be defined by
automata on trees and hence shares the complexity of its components.

5 A Two-Step Approach to Optimality Theory

The idea of the present approach is twofold. One the one hand, the OT-system shall in parts be
represented by languages over linear context-free tree grammars. The generating system GEN

is given as a linear context-free tree grammar of input trees and an LF-transducer defining the
transformation on the input trees. The constraints are given as MSO-sentences over the signature
of output trees or equivalently as regular tree languages. On the other hand, we will still use finite
state automata to compute optimal pairs.

GEN will be defined as a relation between two mildly context-sensitive languages. Let ΣI be the
(single-sorted) signature of input trees and ΣO the (single-sorted) signature of output (candidate)
trees. We assume that if f ∈ ΣI ∩ ΣO then the rank of f is the same in ΣI and ΣO. Let ΓI

be a linear context-free tree grammar over ΣI and L(ΓI) be the language of input trees. The
relation to the output trees will be defined by means of an LF-transducer. Hence let AGEN be
an LF-transducer over signatures ΣI and ΣO. GEN is given as the pair (L(ΓI),AGEN). As a
relation on trees it is defined as {(s, t) | s ∈ L(ΓI), t ∈ AGEN(L(ΓI))}.

A constraint c is defined to be an MSO-sentence over the language of output trees of GEN,
or equivalently, as a regular tree language over signature ΣO. An OT-system is hence given by
a linear context-free tree grammar and an LF-transducer for the generator, and a sequence of
MSO-sentences as constraints.

5.1 Lifting an OT-System

In order to be able to handle an OT-system by automata we have to recode it. The intuition in
this recoding is that the basic assumptions about the operations of a tree grammar, namely tree
substitution and argument insertion, are made explicit. In the following, we will briefly describe
this lifting on a more formal level. All technical details, in particular concerning many-sorted

160



signatures, can be found in a paper by Mönnich (1999). Any context-free tree grammar Γ for a
singleton set of sorts S can be transformed into a regular tree grammar ΓL for the set of sorts
S∗, which characterises a (necessarily regular) set of trees encoding the instructions necessary
to convert them by means of a unique homomorphism h into the ones the original grammar
generates (Maibaum, 1974). The lifting is achieved by constructing for a given single-sorted
signature Σ a new, derived alphabet (an S∗-sorted signature) ΣL, and by translating the terms
over the original signature into terms of the derived one via a primitive recursive procedure. The
lift-operation takes a term in TΣ(Xk) and transforms it into one in TΣL(k). Intuitively, the
lifting eliminates variables and composes functions with their arguments explicitly, e.g., a term
f(a, b) = f(x1, x2) ◦ (a, b) is lifted to the term c(c(f, π1, π2), a, b). The old function symbol f
now becomes a constant, the variables are replaced with appropriate projection symbols and the
only remaining non-nullary alphabet symbols are the explicit composition symbols c. The trees
over the derived lifted signature consisting of the old linguistic symbols together with the new
projection and composition symbols form the carrier of a free tree algebra TL.

Definition 7 [lift] Let Σ be a ranked alphabet of sort S and Xk = {x1, . . . , xk}, k ∈ IN, a finite
set of variables. The derived many-sorted S∗-sorted alphabet ΣL is defined as follows: For each
n ≥ 0, Σ′

ε,n = {f ′ | f ∈ Σn} is a new set of symbols of type 〈ε, n〉; for each n ≥ 1 and each
i, 1 ≤ i ≤ n, πn

i is a new symbol, the ith projection symbol of type 〈ε, n〉; for each n, k ≥ 0 the new
symbol c(n,k) is the (n, k)th composition symbol of type 〈nk1 · · · kn, k〉 with k1 = · · · = kn = k.

ΣL
ε,0 = Σ′

ε,0

ΣL
ε,n = Σ′

ε,n ∪ {πn
i | 1 ≤ i ≤ n} for n ≥ 1

ΣL
nk1···kn,k = {c(n,k)} for n, k ≥ 0 and ki = k for 1 ≤ i ≤ k

ΣL
w,s = ∅ otherwise

For k ≥ 0, liftΣ
k : T (Σ,Xk) → T (ΣL, k) is defined as follows:

lift
Σ
k (xi) = πk

i

lift
Σ
k (f) = c(0,k)(f

′) for f ∈ Σ0

lift
Σ
k (f(t1, . . . , tn)) = c(n,k)(f

′, liftΣ
k (t1), . . . , lift

Σ
k (tn))

for n ≥ 1, f ∈ Σn and t1, . . . , tn ∈ TΣ(Xk)

Note that this very general procedure allows the translation of any term over the original signature.
The left hand side as well as the right hand side of a rule of a CFTG Γ = 〈Σ, F,X, S,P〉 is just a
term belonging to TΣ∪F(X), but so is, e.g., any structure generated by Γ. Further remarks on the
observation that the result of lifting a CFTG is always an RTG can be also found in the paper by
Mönnich (1999). To further illustrate the techniques, we present the continuation of Example 1.
Note that for better readability, we omit all the 0- and 1-place composition symbols.

Example 8 Let ΓL = 〈{a, b, c, d, ε, St, S
0
t }, {S, S

′, S1, S2, a, b, c, d}, S
′,P〉 with P given as follows

S′ −→ c(1,0)(S, ε)

S −→ c(1,1)(S1, c(1,1)(S, c(1,1)(S2, π
1
1)))

S −→ c(1,1)(S
0
t , π

1
1)

S1 −→ c(3,1)(St, a, π
1
1 , d)

S2 −→ c(3,1)(St, b, π
1
1 , c)

161




(1;0)
(1;1)
(3;1)St a �11 d 
(1;1)
(1;1)
(3;1)St a �11 d 
(1;1)
(1;1)S0t �11 
(1;1)
(3;1)St b �11 
 �11

(1;1)
(3;1)St b �11 
 �11

"

Figure 2: A lifted tree with intended relations.

Note that we now have only nullary operatives but extra composition and projection symbols:
The linguistic non-terminals have become constants. An example tree generated by this lifted
grammar is shown in Figure 2. It is the lifted tree corresponding to the sample tree of Figure 1.
The grey shaded lines show how the intended tree is present in the lifted tree.

For every tree t ∈ L(Γ) we define the set lift(t) of lifted trees of t as follows. For s ∈ L(ΓL) let
s ∈ lift(t) iff s is the result of a derivation sequence of grammar rules in ΓL such that there is
a derivation sequence of t and every rule in the derivation sequence of s is the lifted rule of the
corresponding rule in t. I.e., we take the derivation sequence of t, lift each rule in it, and execute
the resulting lifted derivation sequence to obtain s. The parsing step that is involved here is at
most as complex as n6 where n is a measure on the size of the tree t (Mehlhorn, 1979).

lifting an OT-system includes lifting the generator GEN and the constraints. GEN is
given by a linear context-free tree grammar ΓI and an LF-transducer AGEN. The grammar
ΓI is lifted exactly the way defined above to obtain a regular tree grammar ΓL

I . lifting
of the transducer AGEN = (ΣI ,ΣO, Q, P, F ) can be defined on the basis of the insights we
gain from lifting a grammar. We define AL

GEN
as the quintuple (ΣL

I ,Σ
L
O, Q

L, PL, F ) where
ΣL

I and ΣL
O are the lifted signatures as defined above; QL =

⋃
k≥1Q

k. PL consists of the
following productions. For each production f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm)) ∈ P

we have f ′ → (q1, . . . , qm, q)(lift(t)) ∈ PL where lift(t) is the trivial, i.e., grammar-free
lift of t. For each projection symbol πn

i and states q1, . . . , qn ∈ Q there is a production
πn

i → (q1, . . . , qn, qi)(π
n
i ) ∈ PL. For each composition symbol cn,k and all p, p1, . . . , pn, q1, . . . , qk ∈

Q there is a production cn,k((p1, . . . , pn, p)(x), (q1, . . . , qk, p1)(x1), . . . , (q1, . . . , qk, pn)(xn)) →
(q1, . . . , qk, p)(cn,k(x, x1, . . . , xn)) ∈ PL.

lifting of the constraints is done in a different fashion that we can explain only after having
shown how to “undo” a lifting.

5.2 Reconstructing the Intended Trees

As Figure 2 shows, the lifted trees do not seem to have much in common with the trees we
originally started with. Since the candidate output trees generated by AL

GEN
applied to L(ΓL

I )
are lifted trees, we need a way to “find” the intended tree in the lifted trees. In some sense to
be made operational, the lifted structures contain the intended structures. There is a mapping
h from these explicit structures onto structures interpreting the compositions (the c’s) and the
projections (the π’s) the way the names we have given them suggest, viz. as compositions and
projections, respectively, which are, in fact, exactly the intended structures.

162



On the denotational side, we can implement the mapping h with an MSO definable tree transduc-
tion, and on the operational side with a Macro Tree Transducer to transform the lifted structures
into the intended ones. We cannot mention all the technical details here. Rather the interested
reader is referred to the papers by Michaelis et al. (2001) and Morawietz and Mönnich (2001).

Let us restate our goal then: Rogers (1998) has shown the suitability of an MSO description
language for linguistics which is based upon the primitive relations of immediate (�), proper
(�+) and reflexive (�∗) dominance and proper precedence (≺). We will indicate how to define
these relations with an MSO transduction built upon finite-state tree-walking automata thereby
implementing the unique homomorphism mapping the terms into elements of the corresponding
context-free tree language, i.e., the trees linguists want to talk about.

Put differently, it should be possible to define a set of relations RI = {◭,◭+,◭∗

(dominance), c-command, ∢ (precedence), . . .} holding between the nodes n ∈ NL of the lifted
tree TL which carry a “linguistic” label L in such a way, that when interpreting ◭

∗ ∈ RI as a
tree order on the set of “linguistic” nodes and ∢ ∈ RI as the precedence relation on the resulting
structure, we have a “new” description language on the intended structures.

As mentioned before, we will use an MSO definable tree transduction to transform the lifted
structures into the intended ones. The core of this transduction will be the definition of the new
relations via tree-walking automata.

To do so, it is helpful to note a few general facts (illustrated in Figure 2):

1. Our trees feature three families of labels: the “linguistic” symbols, i.e., the lifted inoperatives
of the underlying macro-grammar, L = lift(

⋃
n≥0 Σn); the “composition” symbols C =

{c(n,k)}, n, k ≥ 0; and the “projection” symbols Π.

2. All non-terminal nodes in TL are labeled by some c(n,k) ∈ C. This is due to the fact that
the “composition” symbols are the only non-terminals of a lifted grammar. No terminal
node is labeled by some c(n,k).

3. The terminal nodes in TL are either labeled by some “linguistic” symbol or by some “pro-
jection” symbol πi ∈ Π.

4. Any “linguistic” node dominating anything in the intended tree is on a leftmost branch in
TL, i.e., it is the left-most daughter of some c(n,k) ∈ C. This lies in the nature of composition:
c(n,k)(x0, x1, . . . , xn) evaluates to x0(x1, . . . , xn).

5. For any node p labeled with some “projection” symbol πi ∈ Π in TL there is a unique
node µ (labeled with some c(n,k) ∈ C by (2.)) which properly dominates p and whose i-th
sister will eventually evaluate to the value of π. Moreover, µ will be the first node properly
dominating p which is on a left branch. This crucial fact is arrived at by an easy induction
on the construction of ΓL from Γ.

By (4.) it is not hard to find possible dominants in any TL. It is the problem of determining the
actual “filler” of a candidate-dominee which is at the origin of the complexity of the definition of
◭. There are three cases to account for:

6. If the node considered carries a “linguistic” label, it evaluates to itself;

7. if it has a “composition” label c(n,k), it evaluates to whatever its function symbol – by (4.)
its leftmost daughter – evaluates to;

8. if it carries a “projection” label πi, it evaluates to whatever the node it “points to” – by (5.)
the ith sister of the first C-node on a left branch dominating it – evaluates to.

Note that cases (7.) and (8.) are inherently recursive such that a simple MSO definition will not
suffice.

163



The precise definition of the MSO-transduction from the lifted trees to the intended trees can
be found in the papers (Michaelis et al., 2001; Morawietz and Mönnich, 2001). Let us note that
the definition of the relations in the MSO-transduction can be reversed. Using the inverse of the
MSO-transduction we can “lift” the MSO-sentences defining the constraints of an OT-system.
What has to be done in this “lifting” is just a way of defining the dominance and precedence
relations of the intended trees (which are the ones that the MSO-sentences speak about) into the
dominance and precedence, composition and projection relations of the lifted trees. So, all we
have to do is take their definitions from the MSO-transduction. The result is an MSO-sentence
in the signature for the lifted candidate output trees. Such a sentence can be transformed into
a tree automaton over signature ΣO (see, e.g., (Gécseg and Steinby, 1997)). For a sequence of
constraints (c1, . . . , cp) of an OT-system we obtain a sequence of tree automata (A1, . . . , Ap) over
the signature of lifted output trees.

As stated before, there exists an operational model for the MSO-transduction, namely a macro
tree transducer. The details of how to define the particular MTT we need here can be found in
(Michaelis et al., 2001). In this paper, we take this MTT as given (and denote it by MT T ) and
use it as the automaton that, given a lifted tree, actually computes the intended tree.

5.3 Finding an Optimal Pair

The idea behind the constructions and automata introduced above is now that an optimal pair
(i, o) ∈ GEN can be computed in the following way. We lift the input tree, on the set of lifted
input trees we run the lifted LF-transducer AL

GEN
. The result is a regular set of lifted output

trees. These will be filtered using the automata representing the lifted constraints of the OT-
system. Finally, after applying the constraints, we use the macro tree transducer MT T to obtain
the intended output trees, which are then optimal for the given input.

Theorem 9 Let O = 〈GEN, (c1, . . . , cp)〉 be an OT-system. Then the pair (i, o) ∈ GEN is
optimal iff o = MT T (Ap ◦ · · · ◦ A1 ◦ AL

GEN
(lift(i))).

Proof. Recall that a pair (i, o) ∈ GEN is optimal iff every MSO-sentence cj is true for o (j =
1, . . . , p). Note further that MT T (lift(o)) = o, as was shown by Michaelis et al. (2001). The
proof is based on the insight that the LF-transducer on the intended level and the lifted LF-
transducer on the lifted level lead to the same results. I.e., let i ∈ L(ΓI). Then AGEN(i) =
MT T (AL

GEN
(lift(i))).

So, let every MSO-constraint sentence cj be true for o. Now, AL
GEN

(lift(i)) = lift(o) by
construction of AL

GEN
. Since cj is true for o, oL ∈ Aj(lift(o)) for every oL ∈ lift(o) and

j = 1, . . . , p. Hence lift(o) = Ap ◦ · · · ◦ A1 ◦ AL
GEN

(lift(i))). By the above remark, o =
MT T (Ap ◦ · · · ◦ A1 ◦ AL

GEN
(lift(i))).

Now let o = MT T (Ap ◦ · · · ◦A1 ◦A
L
GEN

(lift(i))). Then oL ∈ Aj(lift(o)) for every oL ∈ lift(o)
and j = 1, . . . , p. Hence, MSO-sentence cj is true for o for every j = 1, . . . , p. That that means
(i, o) is optimal.

We therefore obtain the following modularity result. Let (GEN, C) be an OT-system where GEN

is defined by a linear context-free tree grammar and an LF-transducer, and all constraints of C
are defined by MSO-sentences. Then the complexity of the OT-system is equal to the complexity
of its most complex component.

6 Conclusion

The notion of optimality that we used in this paper is that of unidirectional optimality. We are
interested in the optimal output for a given input. This view is apparently generation driven.
Blutner (2000) points out that in particular in semantics and pragmatics unidirectional optimality

164



may not suffice. The optimal interpretation of an utterance is obtained by an interplay between the
generation process on the speaker side and the parsing process on the hearer side. Blutner therefore
introduces the notion of bidirectional optimality theory. Formal properties of bidirectional OT are
studied by Jäger (2002, 2003). He shows that the modularity result of Frank and Satta extends
to bidirectional OT-systems on strings. Jäger (2003) also shows that for bidirectional OT-systems
the restriction to binary constraints is essential to gain the modularity result.

An interesting question, that we would like to persue, is to see if the results presented here can be
extended to the bidirectional case. In other words, is there a modularity result for bidirectional
OT-systems over mildly context-sensitive languages of trees.

References

Blutner, R. (2000). Some aspects of optimality in natural language interpretation. Journal of
Semantics, 17:189–216.

Courcelle, B. (1997). The expression of graph properties and graph transformations in monadic
second-order logic. In Rozenberg, G., editor, Handbook of Graph Grammars and Computing by
Graph Transformation, pages 313–400. World Scientific Publishing.

Doner, J. (1970). Tree acceptors and some of their applications. Journal of Computer and System
Sciences, 4:406–451.

Frank, R. and Satta, G. (1998). Optimality theory and the generative complexity of constraint
violability. Computational Linguistics, 24:307–315.

Gécseg, F. and Steinby, M. (1984). Tree Automata. Akademiai Kiado, Budapest.

Gécseg, F. and Steinby, M. (1997). Tree languages. In Rozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages, Vol 3: Beyond Words, pages 1–68. Springer-Verlag.

Jäger, G. (2002). Some notes on the formal properties of bidirectional optimality theory. Journal
of Logic, Language, and Information, 11:427–451.

Jäger, G. (2003). Recursion by optimization: On the complexity of bidirectional optimality theory.
Natural Language Engineering, 9(1):21–38.

Kolb, H.-P., Michaelis, J., Mönnich, U., and Morawietz, F. (2003). An operational and denota-
tional approach to non-context-freeness. Theoretical Computer Science, 293:261–289.

Kolb, H.-P., Mönnich, U., and Morawietz, F. (2000). Descriptions of cross-serial dependencies.
Grammars, 3(2/3):189–216.

Maibaum, T. (1974). A generalized approach to formal languages. J. Comput. System Sci.,
88:409–439.

Mehlhorn, K. (1979). Parsing macro grammars top down. Information and Control, 40(2):123–143.

Mezei, J. and Wright, J. (1967). Algebraic automata and contextfree sets. Information and
Control, 11:3–29.

Michaelis, J., Mönnich, U., and Morawietz, F. (2001). On minimalist attribute grammars and
macro tree transducers. In Rohrer, C., Roßdeutscher, A., and Kamp, H., editors, Linguistic
Form and its Computation, pages 287–326. CSLI.

Mönnich, U. (1999). On cloning contextfreeness. In Kolb, H.-P. and Mönnich, U., editors, The
Mathematics of Syntactic Structure, pages 195–229. Mouton de Gruyter.

Morawietz, F. and Cornell, T. (1997). Representing constraints with automata. In Cohen, P. and
Wahlster, W., editors, Proceedings ACL 1997, pages 468–475. ACL.

165



Morawietz, F. and Mönnich, U. (2001). A model-theoretic description of tree adjoining grammars.
In Kruiff, G.-J., Moss, L., and Oehrle, R., editors, Proceedings FG-MOL 2001, volume 53 of
ENTCS. Kluwer.

Prince, A. and Smolensky, P. (1993). Optimality theory: Constraint interaction in generative
grammar. Technical Report RuCCTS-TR 2, Rutgers University.

Rogers, J. (1998). A Descriptive Approach to Language-Theoretic Complexity. CSLI Publications.

Shieber, S. (1985). Evidence against the context-freeness of natural language. Linguistics and
Philosophy, 8:333–343.

Thatcher, J. and Wright, J. (1968). Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81.

Wartena, C. (2000). A note on the complexity of optimality systems. In Blutner, R. and Jäger,
G., editors, Studies in Optimality Theory, pages 64–72. University of Potsdam. Also available
at Rutgers Optimality Archive as ROA 385-03100.

166


