
Algebraic Methods in Language Processing AMiLP-3,
Anton Nijholt and Giuseppe Scollo (eds.), 2003.

(Un-)Decidability Results for Head-Driven Phrase Structure

Grammar

Stephan Kepser and Uwe Mönnich∗

Dept. of Linguistics, University of Tübingen, Germany

{kepser,um}@sfs.uni-tuebingen.de

Abstract

Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag (1987, 1994)) is currently
one of the most prominent linguistic theories. A grammar for HPSG is given by a set of
abstract language universal principles, a set of language specific principles, and a lexicon. A
sentence is grammatical, if it is compatible with all of the principles. The data structures
underlying HPSG are so-called feature structures. These have always been considered as
graphs. In this paper, we formalise feature structures as (hyper-) graphs and use monadic
second-order logic (MS2) as a language to talk about these feature graphs. We indicate that
HPSG grammar principles can be expressed as MS2-formulae over feature graphs. And we
investigate the decidability properties of this framework. Doing so, we show that the MS2-
theory of HPSG feature graphs is undecidable. Since the general definition of feature graphs
we present does not only lead to the undecidability result, but has also other linguistically
undesirable properties, we propose to restrict the class of feature graphs to the subclass that
can be generated by so-called hyperedge replacement grammars. Under this restriction, the
MS2-theory of feature graphs becomes decidable.

Keywords: HPSG, Monadic Second-Order Logic, Hypergraphs, Decidability

1 Introduction

Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag (1987, 1994)) is currently one of
the most prominent linguistic theories. HPSG is a so-called licensing theory. A grammar of such
a theory is not a rule-based system that generates the sentences that are grammatical according
to the theory. Rather grammaticality is expressed by a set of highly abstract principles some
of which are supposed to be language-specific, while others are seen as universally valid for all
natural languages. A sentence is grammatical if there exists an analysis of the sentence that does
not violate any of the principles. Licensing theories usually do not make any statements on how
such an analysis may be gained. They just demand the adherence of the analysis to the principles.

Quite a significant part of the attraction of HPSG to linguists is due to a relatively rigorous
formal framework underlying it and the commitment of prominent HPSG grammarians to a strict
formalisation of grammar theories. It is therefore only natural that there is a long, ongoing
discussion about “the right logic” for HPSG and its intended underlying data structures, namely
feature structures. The three most important groups of logics that have been proposed are feature
logics, modal logics, and classical first-order predicate logic. An important question in these
discussions concerns the decidability of the particular modal or feature logic. This question is not
only interesting for the theoretical logician. Pollard and Sag explicitely demand decidability of an
HPSG formalisation (see Pollard and Sag (1994), p. 10).

∗This research was partly funded by a grant of the German Science Foundation (DFG SFB 441-2).

141

Feature logics are logics especially designed to describe and model feature structures, thereby also
defining what feature structures are or should be. They typically have a restricted expressive
power. A good overview of feature logics is given by Rounds (1997). Particularly influential on
the ideas about feature structures developed by Pollard and Sag in their later book (Pollard and
Sag, 1994) were the proposals by Carpenter (1992) and King (1989), although these proposals are
not necessarily compatible.

The design of King’s Speciate Reentrant Logic (King, 1989) is very closely driven by the needs of
formalisations of HPSG principles. It was shown by Kepser (1994) that consistency of a formula
of this logic is decidable. But King et al. (1999) proved that the more important notion of
grammaticality, which demands an SRL formula to be true for every object in the denotation
domain, is undecidable.

Richter (2000) proposed RSRL, a relational extension of SRL, which significantly extends the
expressive power of the logic by introducing sets, lists, and arbitrary relations over them. As
RSRL is an extension of SRL, grammaticality is undecidable a fortiori. But furthermore the logic
is that expressive that it is in general even undecidable whether a formula is true in a given
structure, as was shown by Kepser (2001).

Feature structures have also been interpreted as multi-modal structures (see, in particular, Kracht
(1995)). The key idea here is that features are modal operators. For modal logics formalising
principles of HPSG Blackburn and Spaan (1993) showed that these logics are undecidable.

It is interesting to see that classical first-order predicate logic has not so often been advocated as a
logic suitable for HPSG as compared to the groups of feature logics or modal logics. An important
reason behind this observation is the fact that the original ideas behind HPSG as spelled out in
the book published in 1987 (Pollard and Sag, 1987) were inspired by concepts of information,
information flow, and information growth. These notions are very well captured by intuitionistic
logics whereas it takes a considerable amount of forcing and torquing to describe them using
classical logic. When in the second book (Pollard and Sag, 1994) the model theoretic ideas were
shifted from intuitionistic to the classical paradigm, feature logics and modal logics were already
established as “the logics” for HPSG so that no one “in the business” felt a need or inclination to
use classical first-order logic.

On the other hand there are methods that translate formalisations in feature logics or modal logics
into classical first-order logic. For SRL, such a method was presented by Aldag (1997). For modal
logic, there is a whole research branch devoted to the translation into classical logic, an overview
of which can be found in the work by Ohlbach et al. (2001).

In this paper, we intend to take the intuition that feature structures are graphs seriously. We
describe feature structures as a particular kind of hypergraphs, namely finite rooted multigraphs.
We show that monadic second-order logic, i.e., the extention of first-order logic by set variables
and quantification over sets of vertices and edges, has an expressive power that makes it easy to
state HPSG grammar formalisms. We investigate decidability properties of monadic second-order
logic (MS2) over HPSG feature graphs and find that the MS2-theory of finite HPSG feature graphs
is in general undecidable. In other words, it is in general not possible to decide if a given sentence
of MS2 has an HPSG feature graph as its model.

One way to interpret this result is to state that HPSG feature graphs cannot be generated (see
also the article by Kepser and Mönnich (2003)). If one demands graphs to be generated by a so-
called context-free hyperedge replacement grammar, then the MS2-theory of finite HPSG feature
graphs becomes decidable. Whether one should postulate this, is a matter of philosophical debate.
From the perspective of a purely licensing theory there is no reason to do so. On the other hand,
licensing theories do not demand that an analysis must be non-generable. It is unimportant how
and from where an analysis is obtained. Thus it could as well be generated somehow. The non-
generability conflicts with an old expectation (going at least back to Humboldt) that a grammar
should use finite means to produce the infinitely many structures of a language. Here, things
depend of course on the interpretation of the notion produce. For more details, see the article by

142

Kepser and Mönnich (2003). Of course, decidability of the logic is a virtue of its own that makes
it well worth considering if the restriction to generability via graph grammars is not one that we
can live with.

After some technical preliminaries we will introduce the relevant concepts from (hyper-) graph
theory and graph grammars in Sections 3 and 4. Thereafter the main section follows that contains
the description of HPSG as graphs using MS2 as the logical language, and the main results of this
paper.

2 Preliminaries

The definition of many-sorted algebras we give below follows the exposition by Courcelle (1990b).
We assume that sets of sorts and sets of operators can be infinite. Let S be a set of sorts. An
S-signature is a set Σ given with two mappings α : Σ → S∗ (the arity mapping) and σ : Σ → S
(the sort mapping). The length of α(f) is called the rank of f , and is denoted by ρ(f). The profile
of f in Σ is the pair (α(f), σ(f)).

A Σ-algebra is an pair A = 〈(As)s∈S , (f)f∈Σ〉 where As is a nonempty set for each s ∈ S, called
the domain or universe of sort s of A, and f : Aα(f) → Aσ(f) is a total function for each f ∈ Σ.
(For a sequence µ = (s1, . . . , sn) in S+, we let Aµ := As1

×As2
× · · · ×Asn

.)

We will now define regular tree grammars. Let Σ be a single sorted signature and TΣ the free term
algebra over Σ, i.e., c ∈ TΣ for all constants c with empty arity; and if f ∈ Σ is of rank n and
t1, . . . , tn ∈ TΣ then f(t1, . . . , tn) ∈ TΣ. A regular tree grammar is a a quadruple Γ = (∆,Σ, P, S)
where ∆ is a single sorted signature of operatives, all of rank 0, Σ a single sorted signature of
inoperatives (of arbitrary rank), P a finite set of productions, and S ∈ ∆ the start symbol. Each
production is of the form A → t where A ∈ ∆ is an operative, and t ∈ TΣ∪∆. Note that since
all operatives in ∆ are constants, they can only appear as leafs in the tree t. Intuitively, an
application of a rule A→ t replaces a leaf node A by the tree t. If s is a tree and A a leaf in s then
we write s ⇒ s[A/t] for a single step derivation. If there is a sequence s0 ⇒ · · · ⇒ sk of single
step derivations, we write s0 ⇒∗ sk for the derivation of sk from s0. The language of a regular
tree grammar Γ is defined as the set La(Γ) := {t ∈ TΣ | S ⇒∗ t}. A set M of trees (or terms) is
called regular, iff there exists a regular tree grammar Γ such that M = La(Γ).

3 Graphs

From its very beginning, HPSG feature structures have intuitively always been regarded as graphs.
We propose to take this intuition seriously and formalise them as a special kind of hypergraphs,
namely rooted directed multigraphs. Hypergraphs are generalisations of graphs where edges are
labelled and have arbitrarily many vertices. We will now define hypergraphs following the proposal
by Courcelle (1990a,b) and quoting it freely where appropriate. Since all the graphs we are dealing
with are hypergraphs, we will omit the prefix hyper-. A signature or ranked alphabet Σ is a finite
set L of labels together with a function ρ : L→ IN equipping each label with a rank.

Definition 1 Let Σ = (L, ρ) be a signature. A concrete graph over Σ is a quintuple G =
〈V,E, lab, inc, prt〉 where

– V is a set whose elements are the vertices of the graph;
– E is a set whose elements are the edges;
– lab : E → L is an edge labelling function;
– inc : E → V ∗ associates with each edge e the sequence of its vertices, a sequence of length
ρ(lab(e));

– prt is a sequence of length n in V ∗ of pairwise disjoint vertices, the ports. The integer n is
the type of the graph G.

143

Thus a concrete graph consists of a set of vertices and a set of labelled edges between the vertices.
Vertices may be labelled by unary edges. The type of an edge e is the arity of its label, i.e,
type(e) = ρ(lab(e)). The ports are needed for technical purposes. A graph is the equivalence class
of all isomorphic concrete graphs. The set of graphs over a signature Σ is denoted by GΣ. A graph
is finite, iff both V and E are finite. We restrict our attention to finite graphs.

Bauderon and Courcelle (1987) define three families of graph operations to turn a set of graphs into
a many-sorted algebra of graphs. (Other such complete families of graph operations are presented,
e.g., by Engelfriet (1997) or Courcelle (1997).) The first family of operations is disjoint sum. Let
G and H be two graphs of types n and n′. We can assume their sets of vertices and edges to be
disjoint. Then G⊕H is 〈VG ∪ VH , EG ∪EH , labG ∪ labH , incG ∪ incH , prtGˆprtH〉 of type n+ n′.

The second operation is the port redefinition. This operation renames or “forgets” ports. If G
is a graph of type n and α : {1, . . . , k} → {1, . . . , n} then the graph after port redefinition is
〈VG, EG, labG, incG, prtG(α)〉 of type k.

The third operation is the port fusion. It fuses port vertices, i.e., the operation identifies groups
of vertices. For every equivalence relation R on the set {1, . . . , n} there is a mapping fuR taking
a graph G of type n and returning G′ that is obtained from G by identifying the ports that are in
the same equivalence class of R.

Note that each of the three families of operations contains denumerably many operators. The
set of all graphs together with these three families of operations forms a many-sorted algebra
G, where the sorts are just the types of the graphs. Bauderon and Courcelle (1987) also define
a (many-sorted) algebra of so-called graph expression GE in the following way. It is the term
algebra of the (sorted) operation symbols of the graph operations described above together with
the following constants: 0 (denoting the empty graph), 1 (denoting the graph consisting of a single
vertex), a for each label a ∈ L (denoting the graph consisting of a single edge of type ρ(a) of label
a together with its ρ(a) vertices). An element of this term algebra is called a graph expression. It
can and should be seen as an instruction for constructing a graph. The graph is the value of the
expression: Since the term algebra is the free algebra of this signature of graph operations there
exists a unique homomorphism h : GE → G from the algebra of graph expressions to the algebra
of graphs. The value of a graph expression is exactly the value of this homomorphism. It is now
interesting to see that the homomorphism is surjective.

Proposition 2 (Bauderon and Courcelle, 1987) Every finite graph is the value of a graph expres-

sion.

Definition 3 Let O be a finite set of graph operation symbols. A set M of graphs is called
equational, iff it is the value of a regular set R ⊂ GE of graph expressions, i.e., the value of a set
R of graph expressions defined by a regular tree language.

To put it the other way around, a regular tree grammar that generates R can be viewed as
generating a set M of graphs by taking the values of the graph expressions R. A set M of graphs
so given is called equational. The name reflects the fact that the tree grammar can be seen as
a system of equations of which val(R) is the least fixed point. This concept was introduced by
Mezei and Wright (1967), for details, see Courcelle (1990b) or Engelfriet (1997).

A natural and indeed very powerful choice of a logical language for graphs is monadic second-
order logic of vertices and edges (MS2). Monadic second-order logic extends first-order logic by
the addition of set variables and quantification over set variables. More precisely, let V be the sort

of vertices and E be the sort of edges. Let {v, v′, v0, v1, v2, . . . , e, e′, e0, e1, e2, . . .} be an infinite
denumerable set of object variables each having sort V or E. Let σ(u) denote the sort of u. Let
{V, U,E,E′, X, Y, Z, . . .} be an infinite denumerable set of set variables each of sort V or E. Again,
let σ(U) denote the sort of U . For each label l ∈ L with arity k there exists a predicate symbol

144

edgl of arity k + 1 where the first argument is of sort E and all others of sort V. The atomic
formulae of MS2 are

– u = u′ where σ(u) = σ(u′),
– u ∈ U where σ(u) = σ(U),
– edgl(e, v1, . . . , vk) where ρ(l) = k, σ(e) = E, and for all 1 ≤ i ≤ k: σ(vi) = V.

Complex formulae are recursively defined as follows. Let ϕ, ψ be formulae, u an object variable
(of any sort) and U a set variable (of any sort), then

– ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ),
– ∀uϕ, ∃uϕ,
– ∀Uϕ, and ∃Uϕ

are formulae.

The semantics of MS2 is an extension of the semantics of first-order logics. Let G =
〈V,E, lab, inc, prt〉 be a graph. A variable assignment α is a function that assigns each object
variable u either an element of V , if σ(u) = V, or an an element of E, if σ(u) = E, and that
assigns each set variable U either a subset of V , if σ(U) = V, or a subset of E, if σ(U) = E. A
modified variable assignment α[u/v] (α[U/V] resp.) is identical to a variable assignment α with
the potential difference that it assigns v (resp. V) to variable u (resp. U). The denotation of
formulae for a given graph G and variable assignment α is as follows.

– u = u′ is true iff α(u) = α(u′);
– u ∈ U is true iff α(u) ∈ α(U);
– edgl(e, v1, . . . , vk) is true iff inc(α(e), α(v1), . . . , α(vk)) and lab(α(e)) = l;
– ¬ϕ is true iff ϕ is false;
– (ϕ ∧ ψ) is true iff ϕ and ψ are true;
– (ϕ ∨ ψ) is true iff ϕ is true or ψ is true;
– (ϕ→ ψ) is true iff ϕ is false or ψ is true;
– ∀uϕ is true if σ(u) = V and for all v ∈ V : ϕ is true under assignment α[u/v] or if σ(u) = E

and for all e ∈ E : ϕ is true under assignment α[u/e];
– ∃uϕ is true if σ(u) = V and there is a v ∈ V such that ϕ is true under assignment α[u/v] or

if σ(u) = E and there is a e ∈ E such that ϕ is true under assignment α[u/e];
– ∀Uϕ is true if σ(U) = V and for all V ′ ⊆ V : ϕ is true under assignment α[U/V ′] or if
σ(U) = E and for all E′ ⊆ E : ϕ is true under assignment α[U/E′];

– ∃Uϕ is true if σ(U) = V and there is a V ′ ⊆ V such that ϕ is true under assignment α[U/V ′]
or if σ(U) = E and there is a E′ ⊆ E such that ϕ is true under assignment α[U/E′].

Many sets of graphs can be defined in MS2 such as, e.g., planar graphs, 3-colourable graphs, or
graphs with a Hamiltonian cycle. As an example, the following formula defines 3-colourability of
a simple graph. Let v, v′, R,G,B be all of sort V and e of sort E.

∃R,G,B ∀v v ∈ R ∨ v ∈ G ∨ v ∈ B ∧ ¬(v ∈ R ∧ v ∈ G) ∧ ¬(v ∈ R ∧ v ∈ B) ∧ ¬(v ∈ G ∧ v ∈ B)∧
∀v, v′(∃e edg(e, v, v′)) → (v ∈ R ∧ v′ ∈ G) ∨ (v ∈ G ∧ v′ ∈ R) ∨

(v ∈ G ∧ v′ ∈ B) ∨ (v ∈ B ∧ v′ ∈ G) ∨
(v ∈ R ∧ v′ ∈ B) ∨ (v ∈ B ∧ v′ ∈ R)

Note that since the graph is simple, there is only one edg relation. The first line says that the
three colour sets R,G, and B partition the domain of vertices. The second part expresses that if
two vertices are connected by an edge then they must be in different colour sets.
Courcelle (1990b) showed that if a relation is MS2-definable then so is its transitive closure. This
is another example of the expressive power of MS2.

A set C of graphs of sort n is called abstractly recognisable, iff there exists a many-sorted algebra
A over the possibly infinite signature of graph operations with finite universes (sort sets), a ho-
momorphism h : G → A from the algebra of graphs to A, and a finite subset FS of An such that
C = h−1(FS). The triple (h,A, FS) is called an automaton, the set FS is the set of final states.

145

Proposition 4 (Courcelle, 1990b) The intersection of an abstractly recognisable set of graphs and

an equational set of graphs is an equational set.

In the proof, the intersection is effectively computed.

Proposition 5 (Courcelle, 1990b) Every MS2-definable set of graphs is abstractly recognisable.

There exists a measure on how similar to a tree a graph is. It is called treewidth, and was introduced
by Robertson and Seymour (1986a).

Definition 6 Let G be a graph. A tree decomposition of G is a pair (T, f) where T is an unrooted
unoriented tree and f : VT → ℘(VG) is a mapping such that
(1) VG =

⋃
{f(i) | i ∈ VT };

(2) for every edge e of G there is a set f(i) such that all vertices of e are in f(i);
(3) if v ∈ f(i)∩ f(j), then v ∈ f(k) for every k belonging to the unique loop-free path from i to j
in T .

The width of a tree decomposition is defined as max{|f(i)| | i ∈ VT } − 1, and the treewidth of G
is the smallest width of a tree decomposition of G.

All proper trees have treewidth 1. Cliques, i.e., graphs where each pair of vertices is connected by
an edge, on the other hand, are clearly graphs that differ very much from trees. Their treewidth is
the size of the clique minus one. The notion of treewidth will be quite important for us. Roughly
speaking, a set of graphs for which there exists a uniform bound on the treewidth is well-behaved,
so to speak. Sets of graphs that have an unbounded treewidth on the other hand are a lot more
difficult to treat. As an important example, Seese (1991) showed the following

Proposition 7 The MS2-theory of a set of finite graphs of unbounded treewidth is undecidable.

On the other hand, if M is an equational set of graphs, then there exists a uniform bound on the
treewidth of the graphs in M (Engelfriet, 1997).

4 Graph Grammars

We will now introduce another way to define sets of graphs via grammars, namely as languages
of so-called context-free hyperedge replacement grammars. As the name implies, a hyperedge
replacement consists of taking out a hyperedge from a given graph and plugging a complete graph,
not just an edge, into its original place. Thus a hyperedge replacement grammar mainly consists
of pairs of hyperedges and graphs that should take their places. The notion of context-freeness
means that the replacement of an edge by a graph takes place independently of the context of that
edge in the “hosting” graph. For brevity, we will write HR grammar for context-free hyperedge
replacement grammar. Recommendable overview articles on HR grammars are the ones by Drewes
et al. (1997) and Engelfriet (1997). The technical exposition that follows is a quote from the article
by Drewes et al. (1997).

Recall that the type of a concrete graph is the number of its ports. The type of an edge is the rank
of its label. Edges are always replaced by graphs of the same type. Let H be a concrete graph
and B ⊆ EH a set of edges to be replaced. Let repl be a mapping from B to a set of concrete
graphs such that type(e) = type(repl(e)) for each e ∈ B. Then the replacement of B in H by repl
yields a concrete graph H [repl] obtained by removing B from EH , adding the nodes and edges of
repl(e) for each e ∈ B disjointly, and fusing the i-th port of repl(e) with the i-th attachment node
of e for each e ∈ B and i = 1, . . . , type(e). All hyperedges keep their labels and attachment nodes;
the ports of H [repl] are the ports of H . If B = {e1, . . . , en} and repl(ei) = Ri for i = 1, . . . , n,

146

Figure 1: Hyperedge replacement of ei by Ri in H (i = 1, . . . , 4). (From (Drewes et al., 1997))

then we write H [e1/R1, . . . , en/Rn] instead of H [repl]. A pictographical example of a hyperedge
replacement is given in Figure 1. Hyperedge replacement is only defined up to isomorphism. Thus
we will, as before, consider the isomorphism classes of concrete graphs as the graphs proper.

Hyperedge replacement possesses some nice properties. Firstly, it has the sequentialisation and
parallelisation property. It does not matter if one replaces a set of edges simultaneously or one
after the other. Therefore, replacement is confluent. The order in which a series of replacement
is performed does not effect the result. Secondly hyperedge replacement is associative. The result
of replacing e in graph G by F and then e′ in graph H by G[e/F] is the the same as replacing
first e′ in H by G and then e in H [e′/G] by F , i.e., H [e′/G[e/F]] = H [e′/G, e/F].

As before, let L be a set of labels. Let N ⊆ L be a set of nonterminals. A production over N
is an ordered pair p = (A,R) where A ∈ N and R ∈ G and the rank of A is equal to the type
of R. Let H ∈ G be a graph and P be a set of productions. Let e ∈ EH and (lab(e), R) ∈ P .
Then H directly derives H ′ = H [e/R] and we write H ⇒P H ′. A sequence of direct derivation
H0 ⇒ · · · ⇒ Hk is called a derivation of length k and denoted by H0 ⇒∗ Hk.

Definition 8 A context-free hyperedge replacement grammar (or HR-grammar) is a quaduple
HRG = (N,T, P, S) where N ⊆ L is a set of nonterminals, T ⊆ L is a set of terminals with
T ∩N = ∅, P is a finite set of productions over N , and S ∈ N is the start symbol.

The graph language La(HRG) generated by HRG is the set

La(HRG) = {H ∈ G | S• ⇒ H}

where S• is the smallest graph of label S, i.e., the graph consisting of rank of S many vertices and
a single edge e of type rank of S connecting these vertices, and an empty port sequence.

We close this section with an important result. It shows that the two independent ways of defining
a set of graphs, namely by a regular language of graph expressions (as explained in the previous
section) and by HR grammars, actually posses the same expressive power.

Proposition 9 (Lautemann, 1988; Engelfriet, 1997) A set of graphs M is equational iff it is the

language of some context-free hyperedge replacement grammar.

The proof given by Engelfriet (1997) is constructive, i.e., given an HR grammar, the proof provides
a construction of a regular tree grammar of graph expressions and vice versa. Since HR grammars
are context-free, equational sets of graphs are sometimes also called context-free sets of graphs.

147

5 HPSG Feature Structures as Graphs

Linguists see the feature structures of HPSG as graphs and often use graphs when they want to
describe certain properties of a structure. A typical example is given in Figure 2, which is taken
out of the book by Pollard and Sag (1994). It describes an entry in a lexicon, namely the entry
for the English pronoun she. That such graphs can be regarded as special types of hypergraphs is

Figure 2: Feature Graph of the English pronoun she. (From (Pollard and Sag, 1994))

simple to see. HPSG feature graphs are rooted, and they are multigraphs, i.e., edges are at most
binary. The full power of hyperedges is not really necessary. But we need unary edges, they will
be used to label vertices. Edge labels are functional. Two edges departing from the same source
vertex must have different labels. Edge labels are called features (or sometimes attributes), vertex
labels are called sorts.

In interpreting feature structures as graphs we have to have a closer look at signatures for HPSG. In
general, these signatures list the features and sorts. But these features and sorts are not unrelated.
Rather there is a strict relationship between them: HPSG feature structures are required to
be totally well-typed and sort resolved. Sort-resolvedness, basically demanding that the sorts
partition the universe, is of no particular relevance here. Well-typedness restricts the admissible
correlations between sorts and features. Each sort is correlated with a set of admissible features.
And for each such feature there is an indication listing the admissible set of sorts on the target
vertex. Total well-typedness additionally requires each admissible feature to be present. Thus
a signature for HPSG is a triple ∆ = (S,F, A) where S is a finite set of sorts (unary predicate
symbols), F is a finite set of features (binary predicate symbols), and A : S × F → ℘(S) is
an appropriateness function expressing the well-typedness restrictions. For example, part of the
HPSG appropriateness function of Figure 2 is A(word, synsem) = {synsem}, A(word, phon) =
{nelist}. It expresses that a vertex of sort word must have exactly two outgoing binary edges, one
labelled phon and one labelled synsem. And the target vertex of the edge labelled phon must
be of sort nelist, while the target vertex of the edge labelled synsem must be of sort synsem.

These signature requirements can be expressed in MS2. HPSG sorts are unary edge labels, features
are binary edge labels. Let u, v, w be variables of sort (in the algebraic sense) V, i.e., vertex
variables, and let e, e′ be variables of sort E (edge variables). (Note that the HPSG sort and
feature disjunctions and conjunctions (like

∨
s∈S) are just abbreviations for long disjunctions and

148

conjunctions in a pure graph language, because the sets of sorts and features are both finite.)

∀v∃e :
∨

s∈S edgs(e, v)
∧∀v∀e, e′ : (

∨
s∈S edgs(e, v) ∧

∨
s∈S edgs(e

′, v)) → e = e′

∧∀f ∈ F : ∀u, v, w, e, e′ : (edgf (e, u, v) ∧ edgf (e′, u, w)) → (v = w ∧ e = e′)
∧

∧
s∈S,f∈F ,A(s,f) 6=∅ ∀v (∃e : edgs(e, v)) →

(∃e, u, e′ : edgf(e, v, u) ∧
∨

s′∈A(s,f) edgs′(e′, u))

∧
∧

s∈S,f∈F ,A(s,f)=∅ ∀v(∃e : edgs(v, e))) → (¬∃e, u : edgf (e, v, u))

The first line states that each vertex must have an HPSG sort, i.e., a unary edge labeld with a
sort. The second line states that a vertex has at most one HPSG sort. The third line states that
features are functional, i.e., two binary edges departing from the same vertex and having the same
(feature) label must be identical. The next two lines cope with the appropriateness function. The
fourth line states that if a sort has admissible features, there must be edges present labelled with
these features, and there must be target vertices for these edges that bear the right sort labels.
The fifth line states that if a sort has no admissible features, a vertex labelled with this sort must
not have any outgoing binary edges.

HPSG principles are formed out of boolean combinations of so-called path expressions and sort
statements. Path expressions allow one to state that two feature paths in a graph end in the same
vertex. Sort statements define the sort of a vertex at the end of a feature path in a graph. Both
path expressions and sort statements can easily be expressed in MS2. Indeed, when considered as a
logic for HPSG, MS2 is very expressive and should be powerful enough to render any linguistically
motivated principle. Here is an example of an HPSG principle. It is the Head-Feature-Principle
by Pollard and Sag (1994, p. 34):

In a headed phrase, the values of synsem|local|category|head and
daughters|head-dght|synsem|local|category|head are token-identical.

Its rendering in MS2looks as follows. Let v, v′, u1, u2, u3, u4, w1, w2, w3, w4, w5 be variables of sort
V and e, e′, f1, f2, f3, f4, g1, g2, g3, g4, g5, g6 be variables of sort E.

∀v (∃e, w1, e
′, v′ : edgdaughters(e, v, w1) ∧ edghead-struc(e′, v′)) →

(∃u1, u2, u3, u4, w1, w2, w3, w4, w5, f1, f2, f3, f4, g1, g2, g3, g4, g5, g6 :
edgsynsem(f1, v, u1) ∧ edglocal(f2, u1, u2) ∧ edgcategory(f3, u2, u3) ∧ edghead(f4, u3, u4) ∧
edgdaughters(g1, v, w1) ∧ edghead-dght(g2, w1, w2) ∧ edgsynsem(g3, w2, w3) ∧
edglocal(g4, w3, w4) ∧ edgcategory(g5, w4, w5) ∧ edghead(g6, w5, u4))

The premise of the implication demands the graph to be a headed phrase. Note that the
key information of this long path equation is hidden in the reappearance of variable u4 from
edghead(f4, u3, u4) in edghead(g6, w5, u4), i.e., the two paths both end in vertex variable u4.

Thus an HPSG grammar, consisting of the signature requirements and the principles, can be
expressed by an MS2-sentence. This sentence can be regarded as an axiomatisation for HPSG
feature graphs. Compatibility of a graph with the grammar is rendered by the graph being a
model of the MS2-sentence.

We will now turn to showing that the MS2-theory of finite HPSG feature graphs is undecidable.
To do so, let us consider a special set of graphs, namely grids. Grids are special types of planar
graphs. They are the result of gluing squares in lines and columns. forming a rectangular shape.
An example of a 6 × 3 grid is given in Figure 3.

It is not difficult to see that HPSG formalisations allow the construction of grids. Consider the
following signature 〈{s, u, r, c}, {U,R}〉 with the appropriateness function

A(s, U) = {s, u} A(u,R) = {u, c}
A(s,R) = {s, r} A(r, U) = {r, c}

149

•u
R

// •u
R

// •u
R

// •u
R

// •u
R

// •u
R

// •c

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•r

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•r

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•s
R

//

U

OO

•r

U

OO

Figure 3: A 6 × 3 grid.

We suppose the grammar to be empty. The set GR of all finite graphs that are models of this
signature contains all finite grids such as the one in Figure 3. It does, of course, contain many more
graphs that are not grids. But this is not of importance for us. If desired, the set of graphs can
be restricted by adding principles so that only grid-like graphs are in the set. Indeed, Courcelle
(1997) shows how to define finite grids in MS2.

Proposition 10 The set GR has unbounded width.

Proof. GR contains all finite grids. The treewidth of an n× k grid is min(n, k) (see (Bodlaender,
1998)). Therefore there is no bound on the treewidth of GR.

As a consequence, the main result of this paper can be established.

Theorem 11 The MS2-theory of finite HPSG feature graphs is undecidable.

The proof of this theorem is a simple consequence of the above proposition and Proposition 7.

Note that since King et al. (1999) use infinite feature structures the above proposition is not an
immediate consequence of the undecidability of grammaticality of SRL.

Since the proof is based on constructing graphs that are not very likely suitable models of linguistic
analyses, there may be a way to get around the above undecidability result by excluding grid-like
graphs from the set of models considered. One natural way to to this is to demand of the set of
graphs to be generable by an HR grammar.

Theorem 12 The MS2-theory of finite HPSG feature graphs is decidable, if this set of graphs can

be generated by an HR grammar.

Proof. This proof is due to Courcelle (1990b).
Let φ be an MS2-sentence. By Proposition 5, the set of graphs Mφ which are models of φ is
abstractly recognisable. Courcelle (1990b) gives a construction of the abstract automaton in his
proof. Let M be a set of graphs given by an HR grammar. By Proposition 9, this set is equational.
By Proposition 4, one can construct a regular tree grammar definingM∪Mφ. One can test whether
M ∪Mφ = ∅.

150

6 Conclusion

It would in our opinion be desirable to obtain a decidability result without recourse to a graph
grammar formalism that paves the way to decidability. But it seems that the expressive power of
a typical modal or feature logic for HPSG is insufficient to forbid grids and their generalisations.
The chances to exclude these graphs by means of MS2 are a lot better. This can indeed be done
and it seems worth adding such a formula as an axiom to the HPSG theory, because there are
also independent linguistic motivations to exclude these types of graphs. The collection of graphs
of a fixed treewidth is MS2-definable. Suppose that H is a finite planar graph. Then the class
FORB(H) is MS2-definable. This is the class of graphs G such that no member of G has H as
minor, where H is a minor of G if it can be obtained from a subgraph of G by means of repeated
edge contractions. According to an important result due to Robertson and Seymour (1986b) there
is a bound n on the treewidth of all members of G. In other words, for any fixed n the set of finite
graphs of treewidth at most n is MS2-definable.

References

Aldag, B. (1997). A proof theoretic investigation of prediction in HPSG. Master’s thesis, Seminar
für Sprachwissenschaft, University of Tübingen.

Bauderon, M. and Courcelle, B. (1987). Graph expressions and graph rewritings. Mathematical

Systems Theory, 20:83–127.

Blackburn, P. and Spaan, E. (1993). A modal perspective on the computational complexity of
attribute value grammar. Journal of Logic, Language, and Information, 2:129–169.

Bodlaender, H. L. (1998). A partial k-arboretum of graphs with bounded treewidth. Theoretical

Computer Science, 209:1–45.

Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge University Press.

Courcelle, B. (1990a). Graph rewriting: An algebraic and logic approach. In van Leeuwen, J.,
editor, Handbook of Theoretical Computer Science, volume B, chapter 5, pages 193–242. Elsevier.

Courcelle, B. (1990b). The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Information and Computation, 85:12–75.

Courcelle, B. (1997). The expression of graph properties and graph transformations in monadic
second-order logic. In Rozenberg, G., editor, Handbook of Graph Grammars and Computing by

Graph Transformation, pages 313–400. World Scientific Publishing.

Drewes, F., Kreowski, H.-J., and Habel, A. (1997). Hyperedge replacement graph grammars. In
Rozenberg, G., editor, Handbook of Graph Grammars and Computing by Graph Transformation,
pages 95–162. World Scientific Publishing.

Engelfriet, J. (1997). Context-free graph grammars. In Rozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages, Vol III: Beyond Words, pages 125–213. Springer.

Kepser, S. (1994). A satisfiability algorithm for a typed feature logic. Master’s thesis, Seminar
für Sprachwissenschaft, Universität Tübingen, Arbeitspapiere des SFB 340, Bericht Nr. 60.

Kepser, S. (2001). On the complexity of rsrl. In Kruiff, G.-J., Moss, L., and Oehrle, R., editors,
Proceedings FG-MOL 2001, volume 53 of ENTCS. Kluwer.

Kepser, S. and Mönnich, U. (2003). Graph properties of hpsg feature structures. In Jäger, G.,
Monachesi, P., Penn, G., and Wintner, S., editors, Formal Grammar 2003.

King, P. J. (1989). A Logical Formalism for Head-Driven Phrase Struture Grammar. PhD thesis,
University of Manchester.

151

King, P. J., Simov, K. I., and Aldag, B. (1999). The complexity of modellability in finite and
computable signatures of a constraint logic for head-driven phrase structure grammar. Journal

of Logic, Language and Information, 8(1):83–110.

Kracht, M. (1995). Is there a genuine modal perspective on feature structures? Linguistics and

Philosophy, 18:401–458.

Lautemann, C. (1988). Decomposition trees: Structured graph representation and efficient algo-
rithms. In Dauchet, M. and Nivat, M., editors, CAAP ’88, 13th Colloquium on Trees in Algebra

and Programming, volume 299 of LNCS, pages 28–39.

Mezei, J. and Wright, J. (1967). Algebraic automata and contextfree sets. Information and

Control, 11:3–29.

Ohlbach, H. J., Nonnengart, A., de Rijke, M., and Gabbay, D. (2001). Encoding two-valued
nonclassical logics in classical logic. In Robinson, A., editor, Handbook of Automated Reasoning,
pages 1403–1486. North Holland.

Pollard, C. and Sag, I. A. (1987). Information Based Syntax and Semantics, Vol. 1: Fundamentals.
Number 13 in Lecture Notes. CSLI.

Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. University of Chicago
Press.

Richter, F. (2000). A Mathematical Formalism for Linguistic Theories with an Application in

Head-Driven Phrase Structure Grammar. PhD thesis, SfS, Universität Tübingen.

Robertson, N. and Seymour, P. (1986a). Graph minors II. Algorithmic aspects of treewidth.
Journal of Algorithms, 7(309–322).

Robertson, N. and Seymour, P. (1986b). Graph minors V: Excluding a planar graph. Journal of

Combinatorial Theory, Series B, 52:92–114.

Rounds, W. (1997). Feature logics. In van Benthem, J. and ter Meulen, A., editors, Handbook of

Logic and Language, pages 475–533. Elsevier.

Seese, D. (1991). The structure of the models of decidable monadic theories of graphs. Annals of

Pure and Applied Logic, 53:169–195.

152

