
Extreme Markup Languages 2004 Montréal, Québec
August 2-6, 2004

A Simple Proof for the Turing-Completeness
of XSLT and XQuery

Stephan Kepser
University of Tübingen

Abstract
The World Wide Web Consortium recommends both XSLT and XQuery as
query languages for XML documents. XSLT, originally designed to transform
XML into XSL-FO, is nowadays a fully grown XML query language that is
mostly suited for use by machines. XQuery on the other hand was particularly
designed to be easily used by humans. Both languages are known to be
Turing-complete. We provide here a very simple proof of Turing-completeness
of XSLT and XQuery by coding -recursive functions thereby showing that
Turing-completeness is a consequence of a few basic and fundamental
features of both languages.

A Simple Proof for the Turing-Completeness of XSLT
and XQuery
Table of Contents

Introduction...1
-Recursive Functions... 2

Some XSLT...3
Coding -Recursive Functions in XSLT...4

Basic Functions...5
Composition..6
Primitive Recursion...7

-Recursion...9
A Complete Style Sheet..10

Correctness..10
Coding -Recursive Functions in XSLT Using Stylesheet Functions...12
Coding -Recursive Functions in XQuery..14
Conclusion..16
Acknowledgements...17
Bibliography..17
The Author..18

A Simple Proof for the Turing-Completeness
of XSLT and XQuery
Stephan Kepser

§ Introduction
The World Wide Web Consortium (W3C) recommends both XSLT and XQuery as query languages for
XML documents. Query languages in this sense comprise two components. The first component
identifies relevant substructures of the documents to be queried. For XSLT and XQuery, XPath forms
the core of this component. The second component allows to arrange the matches and to provide
structured output. This distinction is a mostly conceptual one. In practical query languages, these
components are often not clearly separated. An example is the FLWOR-expression of XQuery, which
unites matching and arranging tasks.

XSLT (X Style sheet Language Transformations [XSLT 1.0][XSLT 2.0]) is the recommendation of the
W3C for an XML [XML] style sheet language. The original primary role of XSLT was to allow users to
write transformations of XML to XSL-FO, thus describing the presentation of XML documents.
Nowadays, XSLT allows for arbitrary transformation from one XML document to another, and many
people use it as their basic tool for XML to XML transformations, which renders XSLT into an XML
query language. This naturally raises the question about the expressive power of XSLT as a query
language. We show here that XSLT is Turing-complete by coding -recursive functions in XSLT.

Turing-completeness is a statement on the expressive power of a query language, a programming
language, or an arbitrary computational model. It states that everything that can be computed with a
Turing machine can be computed in that language or computational model. Since computation with
Turing machines is the most powerful model of computation known to exist, Turing-completeness of a
language basically means that everything that can be computed at all can be computed with
implementations of the language. For programming languages, this is a desirable property, because is
states that the language does not restrict the user in what he or she may wish to express or compute with
the language. For a query language, the situation is more complicated, because there is a price to be paid
for the high expressive power, and this price is that it is possible to write queries which require
enormous amounts of time to evaluate or even queries that cannot be evaluated at all. Since XSLT is a
general language for the transformation of XML documents, it can be seen as a programming language
as much as a query language. Therefore it is a sensible approach not to restrict the type of
transformations expressible in XSLT. In other words, Turing-completeness is a desirable property,
because users should be able to decide freely which types of transformations they want to use.

Turing-completeness of XSLT seems to be a folklore result in the XSLT programmers community.
There is even an implementation of Turing-machines in XSLT [TMML] available. Thus we certainly do
not claim the result to be new. The advantage of the present proof is that it is short, simple, and clear. In
opposite to a Turing-machine implementation it can be understood and checked easily. It also shows that
there are not many XSLT features needed to prove Turing-completeness. It is not the case that one needs
remote complicated features or sophistication. Basically all it takes is recursion and very basic
arithmetics (simple addition). Amongst other things this means that one cannot just remove a rarely used
feature from XSLT in the hope to obtain a subset of XSLT which is to be situated in a lower complexity
class.

Previous work on the expressive power of XSLT was mostly concerned with fragments of XSLT. Neven
et al. [Bex] [Neven] investegated XSLT from the point of view of its intended model of structural
recursion over trees.

There exist now several query languages for querying XML documents. The W3C recommends (as a
working draft) XQuery [XQuery 1.0] as a query language for human use. XQuery is based on XPath
[XPath 1.0][XPath 2.0], a language originally designed to locate elements in an XML document. XQuery
adds variables and recursion to this, but also features to produces structured output. XQuery grew out of
Quilt [Quilt], an XML query language that was deliberately chosen to be Turing-complete. Hence
XQuery is also Turing-complete. To show this in a simple way we provide a coding of -recursive
functions along the same lines as we do it for XSLT. This coding is a lot simpler to perform in the case
of XQuery, because (unrestricted) recursion is part of the language; it need not be emulated.

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 1

It is interesting to note that the W3C now recommends two XML query languages with the same
expressive power, both based on XPath, but with quite some differences. XSLT’s processing model is to
transform a document by structural recursion starting with the root node and ending at the leaves.
XQuery does not have a processing model. Instead it possesses an abstract semantics which is originally
based on a query algebra. XQuery has a human-readable syntax while XSLT has an XML-based syntax,
which is very verbose, and cumbersome to read for humans. XQuery is strictly typed. XSLT is more
liberal about typing. A stylesheet may be strictly typed. But types can often also be left out. In that case
the programmer relies on the built-in type conversion mechanisms of XSLT. So, perhaps apart from
typing issues, XSLT is more machine oriented while XQuery is more suitable for human use.

This paper is organised as follows. We start with an explanation and the formal definition of -recursive
functions. Section “Some XSLT” contains a short overview over those XSLT constructs that are needed
for the coding of recursive functions. The coding itself is provided in Section “Coding -Recursive
Functions in XSLT”. Since it is not simple to see that this coding is correct, we provide an extensive
argument that it is in the next section (“Correctness”). Section “Coding -Recursive Functions in XSLT
Using Stylesheet Functions” shows that there is a much simpler coding available if one uses XSLT's
stylesheet functions. In Section “Coding -Recursive Functions in XQuery”, we give a coding of -
recursive functions in XQuery.

§ -Recursive Functions
A Turing machine is an abstract concept of defining computations [Lewis]. Its components are an
infinite tape, a finite set of states, and a finite set of instructions. At any moment, the machine is in one
of the states. The tape is organised in cells; the machine has a read-write head that can read one cell from
the tape or write a symbol onto a cell. A computation step involves changing the state of the machine,
writing a symbol to the tape and moving the read-write head of the machine one cell to the left or to the
right, depending on the instruction set. The exact details do not matter here. What is important, though,
is that this relatively simple concept of computation has proven to be very powerful and universal. Many
different concepts of computation have been proposed. All of them were found to be equivalent to
Turing machines or less powerful. It is therefore assumed that every “effective computation” or
“algorithm” can be programmed to run on a Turing machine. This assumption is known as Church's
thesis.

Amongst the many equivalent definition of Turing-complete computations there exists a proposal by
Kleene [Kleene] using so-called -recursive functions for computations on natural numbers. Our
definition of -recursive functions follows the exposition by Lewis and Papadimitriou [Lewis]. -
recursive functions are inductively defined. The base forms a set of functions that always return the
number 0, a set of functions that select a component out of a tuple, and the successor function, which
adds 1 to any given natural number. These basic functions can be combined to give more complex
functions using three different schemata. The simplest one is composition of functions. Primitive
recursion, the second schema, is the counterpart of inductive definitions on natural numbers. It allows to
define the value of a function for some number n based on the value this function returns for its
predecessor n-1. The recursion is based in the function value for the number 0. The third schema is -
recursion. It provides an unbounded search mechanism. The formal definition for -recursive functions
follows.

Definition 1

The basic functions are the following:

1. For any k 0, the k-ary zero function is defined as zerok (n1, … , nk) = 0 for all n1, … , nk .

2. For any k j > 0 the j-th k-ary projection function is simply the function k, j (n1, … , nk) = nj

for all n1, … , nk .

3. The successor function is defined as succ(n) = n +1 for all n .

The composition is defined as follows: Let k, l 0, let g : k be a k -ary function, and let h1, … , hk

be l -ary functions. Then the composition of g with h1, … , hk is the l-ary function f(n1, … , nl) = g(h1(n1,
… , nl), … , hk (n1, … , nl)).

Primitive recursion: Let k 0 and g be a k-ary function, and let h be a k+2-ary function. Then the
function defined recursively by g and h is the k+1-ary function f with

Kepser

page 2 Extreme Markup Languages 2004

- f(n1, … , nk , 0) = g(n1, … , nk),

- f(n1, … , nk , m +1) = h(n1, … , nk , m, f(n1, … , nk , m))

for all n1, … , nk , m .

-Recursion: Let k 0 and g be a k +1-ary function. The minimisation of g is the k -ary function f
defined as f(n1, … , nk) =

- the least m such that g(n1, … , nk , m) = 0

- 0 otherwise

for all n1, … , nk .

It is well known that -recursion is required to define all Turing-computable functions. -recursion is the
only way to provide the equivalent of unbounded search. For a discusion of this issue including an
equivalence proof to Turing machines, see, e.g., [Lewis]. We note in passing that primitive recursion is
necessary even in the presence of -recursion. It is indeed the only way to define a function that truly
depends on more than one argument.

§ Some XSLT
A full explanation of XSLT is of course far beyond the scope of this paper. The interested reader is
referred to the official standard [XSLT 1.0][XSLT 2.0], published by the World Wide Web Consortium,
unfortunately not always easy to read. We will give here a short overview over the constructs we need
for coding -recursive functions. In a nutshell, XPath provides the arithmetics, and XSLT provides the
recursion (with a little help from XPath). As we will see, we need only a very small subpart of XSLT,
basically template calling, parameter passing, some basic arithmetics and a little bit of string handling.
Arithmetics and string handling are defined in XPath [XPath 1.0] [XPath 2.0], the standard for
expressions in XSLT.

Templates are XSLT’s way of expressing procedures.

<xsl:template name="f">
…
</xsl:template>

Templates may have a name. If a template has a name, it can be called by another template via this
name:

<xsl:call-template name="f">
…
</xsl:call-template>

Instead of an identifier (Qname in XSLT terminology) like f there may be an expression that can be
evaluated to an identifier, so that the template to be called may be determined at run-time. This is one of
the features newly introduced in XSLT version 2.0 that we will make use of to simplify the exposition.
xsl:call-template corresponds to jumping to a particular subroutine in a program code. After
completion of the called template execution of the calling template is continued, as is standard for
procedure calls.

Parameters can be used for passing information from one template to another. They have a name and a
binding.

<xsl:param name="n"/>

to be placed at the beginning of a template states that this template can receive a parameter called n.
When the template is called, i.e., inside a <xsl:call-template> … </xsl:call-template>
block, the parameter is transfered by

<xsl:with-param name="n" select="expr"/>

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 3

Variables are similar to parameters, but local to the template in which they occur. They are not used for
passing information between templates.

<xsl:variable name="m" select="expr"/>

defines a local variable with name m and binds it to the value of the expression expr.

Conditionals XSLT provides constructs for conditional execution. We only need the simple form of

<xsl:if test=’expr’>
…
</xsl:if>

If the expression expr evaluates to true, the block enclosed by <xsl:if> and </xsl:if> is
executed. If it evaluates to false, the block is skipped. The expressions we will use in tests are very
simple: We just test if the value of a parameter is equal to 0.

Arithmetics XPath provides natural numbers and addition and subtraction of them. That is all we need.
It may be intersting to note that in XPath 2.0 integers – and therefore natural numbers – are at least
theoretically of arbitrary size (see [XML Schema]).

Strings XPath provides stings as data types and string functions which allow one to emulate stacks by
strings. One needs a symbol separating objects on the stack. In our case it will be the slash (/). To push
an element on the stack, we use the function concat to concatenate strings. It takes two or more
arguments and returns their concatenation. To get the top element of the stack, we use the function
substring-before which takes two strings as arguments and returns the substring of the first string before
the first occurrence of the second string. When using the stack as the first and the separating symbol `/'
as the second argument, the top of the stack is returned. In other words, the leftmost element of the string
is the top of the stack. To get the rest of the stack, we use substing-after.

§ Coding -Recursive Functions in XSLT
The subsequent coding is based on the following assumption:

• There is no way to define functions in XSLT.

A function in this sense is a procedure or subroutine that can return an atomic value such as a string or an
integer value to the calling routine. This assumption is true for XSLT 1.0. For XSLT 2.0, the assumption
is no longer true. The ability to use functions in the coding of -recursive functions simplifies this coding a
lot. The details are discussed in Section “Coding -Recursive Functions in XSLT Using Stylesheet
Functions”. Since it is the aim of the present paper to show that Turing-completeness is a consequence
of a few key features of XSLT, we still believe it to be justified to assume there to be no functions,
because they are not part of the original core of XSLT.

Thus the key problem of computing with templates is the (assumed) lack of the ability to return a value
from a subcomputation. How can one pass on the result of a subcomputation? We propose to recode the
control flow for templates and to pass on results of prior computations by means of stacks. Here is a
simple example. Suppose template A contains a call to template B. We divide template A into two
pieces. The first part contains everything up to and including the call of B. The second part forms a new
template A' that contains everything following the call of B. Now at the end of the template B we do not
simply return to A, rather we insert a call to A'. If both B and A' are equipped with a stack of results
computed so far as a parameter, we can transfer knowledge of previous computation results from A to B
and B to A' by passing on this stack in each template call. If we want a generic coding of B, one in which
template B may be called from arbitrary templates, we do not know which template to call at the end of
the computation of B. A solution to this problem consists in the use of another stack, a stack for names
of templates to be called to continue computation. If there is such a stack as a parameter of all templates,
then template A could “tell” template B to continue with A' by simply pushing the name A' on that
stack. At the end of template B, the top of the stack would contain the name of the template to be called
next, namely A'.

Thus we need stacks for two purposes: Firstly, when calling an XSLT-template for doing
subcomputations we need to know the return point, the point at which computation shall resume after

Kepser

page 4 Extreme Markup Languages 2004

completing a subcomputation. Since subcomputations can call further subcomputations, we need a stack
of return points and not just a single one. This stack is the call stack. Secondly, we need a storage place
for results of subcomputations. There is no way to determine beforehead how many results we will need
to store, so we use a stack. This stack is the value stack. These two stacks will be parameters of all
templates, being passed on from one template to the next.

While the coding of the basic functions is easy to grasp from the XSLT source code, the coding of
complex functions is more demanding. We therefore explain the way these templates work each time
after presenting the XSLT code for each of the complex functions.

Basic Functions
Let k 0. We code zerok (n1, … , nk) as follows:

<xsl:template name="zero-k">
 <xsl:param name="n-1"/>
 …
 <xsl:param name="n-k"/>
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:call-template name="substring-before($call-stack,'/')">
 <xsl:with-param name="call-stack"
 select="substring-after($call-stack,'/')"/>
 <xsl:with-param name="value-stack" select="concat('0/',$value-stack)"/>
 </xsl:call-template>
</xsl:template>

The core of this code is concat(’0/’,$value-stack), which pushes 0 onto the value stack. All the
rest is parameter and continuation point handling. The parameter block is there to receive the parameters n1,
… , nk of the calling function, although they are not needed for “computing” the value of the function.
The last two lines in the parameter block receive the call stack and the value stack. The next part is
already the recursive call to the next template. To determine which one that is we just pop it from the
call stack.

Please note that the k serves as an external parameter in the name zero-k or the parameter name n-k.
That is to say, in a actual instantiation the k is replaced by the natural number the parameter represents.
An example would be zero-5 and n-5 for k = 5.

Let k j >0. We code k, j (n1, … , nk) as follows:

<xsl:template name="pi-k-j">
 <xsl:param name="n-1"/>
 …
 <xsl:param name="n-k"/>
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:call-template name="substring-before($call-stack,'/')">
 <xsl:with-param name="call-stack"
 select="substring-after($call-stack,'/')"/>
 <xsl:with-param name="value-stack"
 select="concat($n-j,'/',$value-stack)"/>
 </xsl:call-template>
</xsl:template>

Here again, k and j serve as external parameters to the template and variable names. An instantiated
template name could be, e.g., pi-5-2. These external parameters k, l, and j will be used in most
subsequent codings.

Coding of the successor function succ(n):

<xsl:template name="succ">
 <xsl:param name="n"/>
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:call-template name="substring-before($call-stack,'/')">
 <xsl:with-param name="call-stack"
 select="substring-after($call-stack,'/')"/>
 <xsl:with-param name="value-stack"
 select="concat($n + 1,'/',$value-stack)"/>

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 5

 </xsl:call-template>
</xsl:template>

Composition
Let k, l 0. We code the composition f(n1, … , nl) = g(h1(n1, … , nl), … , hk (n1, … , nl)) by a series
of templates:

<xsl:template name="f">
 <xsl:param name="n-1"/>
 …
 <xsl:param name="n-l"/>
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:call-template name="h1">
 <xsl:with-param name="n-1"/ select="$n-1"/>
 …
 <xsl:with-param name="n-l" select="$n-l"/>
 <xsl:with-param name="call-stack"
 select="concat('f-s-1/',$call-stack)"/>
 <xsl:with-param name="value-stack"
 select="concat($n-1,'/',$n-2,'/',…,'/',$n-l,'/',$value-stack)"/>
 </xsl:call-template>
</xsl:template>

For 0 < j < k -1 a template to call hj +1:

<xsl:template name="f-s-j;">
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:variable name="rv" select="substring-before($value-stack,'/')"/>
 <xsl:variable name="vs-1" select="substring-after($value-stack,'/')"/>
 <xsl:variable name="n-1" select="substring-before($vs-1,'/')"/>
 <xsl:variable name="vs-2" select="substring-after($vs-1,'/')"/>
 <xsl:variable name="n-2" select="substring-before($vs-2,'/')"/>
 <xsl:variable name="vs-3" select="substring-after($vs-2,'/')"/>
 …
 <xsl:variable name="n-l" select="substring-before($vs-l,'/')"/>
 <xsl:variable name="vs-l+1" select="substring-after($vs-l,'/')"/>
 <xsl:variable name="vss-1" select="concat($rv,'/',$vs-l+1)"/>
 <xsl:variable name="vss-2"
 select="concat($n-1,'/',$n-2,'/',… ,'/',$n-l,'/',$vss-1)"/>
 <xsl:call-template name="h-j+1">
 <xsl:with-param name="n-1"/ select="$n-1"/>
 …
 <xsl:with-param name="n-l" select="$n-l"/>
 <xsl:with-param name="call-stack"
 select="concat('f-s-j+1/',$call-stack)"/>
 <xsl:with-param name="value-stack" select="$vss-2"/>
 </xsl:call-template>
</xsl:template>

The template to call hk . In opposite to the previous cases we do not need to store the parameters n1, … , nl

on the value stack any more.

<xsl:template name="f-s-k-1">
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:variable name="rv" select="substring-before($value-stack,’/’)"/>
 <xsl:variable name="vs-1" select="substring-after($value-stack,’/’)"/>
 <xsl:variable name="n-1" select="substring-before($vs-1,’/’)"/>
 <xsl:variable name="vs-2" select="substring-after($vs-1,’/’)"/>
 <xsl:variable name="n-2" select="substring-before($vs-2,’/’)"/>
 <xsl:variable name="vs-3" select="substring-after($vs-2,’/’)"/>
 …
 <xsl:variable name="n-l" select="substring-before($vs-l,'/')"/>
 <xsl:variable name="vs-l+1" select="substring-after($vs-l,'/')"/>
 <xsl:variable name="vss" select="concat($rv,'/',$vs-l+1)"/>
 <xsl:call-template name="h-k">
 <xsl:with-param name="n-1"/ select="$n-1"/>
 …
 <xsl:with-param name="n-l" select="$n-l"/>
 <xsl:with-param name="call-stack"
 select="concat('f-s-k/',$call-stack)"/>
 <xsl:with-param name="value-stack" select="$vss"/>

Kepser

page 6 Extreme Markup Languages 2004

 </xsl:call-template>
</xsl:template>

And finally the template to call g :

<xsl:template name="f-s-k">
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:variable name="rv-k" select="substring-before($value-stack,’/’)"/>
 <xsl:variable name="vs-1" select="substring-after($value-stack,’/’)"/>
 <xsl:variable name="rv-k-1" select="substring-before($vs-1,’/’)"/>
 <xsl:variable name="vs-2" select="substring-after($vs-1,’/’)"/>
 …
 <xsl:variable name="rv-1" select="substring-before($vs-k-1,'/')"/>
 <xsl:variable name="vs-k" select="substring-after($vs-k-1,'/')"/>
 <xsl:call-template name="g">
 <xsl:with-param name="n-1"/ select="$rv-1"/>
 …
 <xsl:with-param name="n-k" select="$rv-k"/>
 <xsl:with-param name="call-stack" select="$call-stack"/>
 <xsl:with-param name="value-stack" select="$vs-k"/>
 </xsl:call-template>
</xsl:template>

Basically, we compute the values of h1(n1, … , nl), … , hk (n1, … , nl) first and use them then as input
to the template for g . We use the value stack to store the parameters n1, … nk because we need them for
each call to an hj . We use the value stack also for accumulating the resulting values of the computations
of h1, … , hk . So, the template f pushes the parameters n1, … , nk onto the value stack and `f-s-1' onto
the call stack. This is the name of the template to be called at the end of the computation of h1. Template f
calls the template for h1 with parameters n1, … , nk and the call stack and value stack.

For 0 < j < k -1 the template f-s-j is called at the end of the computation for hj . The top of the value
stack now consists of

hj (n1, … , nk), n1, … , nk , hj -1(n1, … , nk), … , h1(n1, … , nk).

Template f-s-j pops the elements hj (n1, … , nk), n1, … , nk from the stack storing them in local
variables. It pushes hj (n1, … , nk) back onto the value stack and thereafter also pushes n1, … , nk back
onto that stack. Thus the order of return value from hj and the parameters is now reversed on the stack.
Template f-s-j finishes by calling the template for hj +1 with parameters n1, … , nk , the call stack with
the next template f̀-s-j+1' pushed on top of it, and the value stack.

The template f-s-k-1 is very similar to the above ones. It is called at the end of the computation for hk

-1. The top of the value stack now consists of

hk -1(n1, … , nk), n1, … , nk , hk -2(n1, … , nk), … , h1(n1, … , nk).

Template f-s-k-1 thus pops the elements hk -1(n1, … , nk), n1, … , nk from the stack to store them in
local variables. It pushes hj (n1, … , nk) back onto the value stack. The parameters n1, … , nk need not
be pushed back onto the value stack, because we need them for the last time here for the call of hk .
Template f-s-k-1 finishes by calling the template for hk with parameters n1, … , nk , the call stack with
the template f̀-s-k' pushed on top of it, and the value stack.

Finally, the template f-s-k is called at the end of the computation of hk . The top of the value stack now
consists of

hk (n1, … , nk), hk -1(n1, … , nk), … , h1(n1, … , nk).

These are popped from the stack and stored in local variables to be used as parameters in the call to g
accompanied by the call stack and the value stack. Because the computation of g is the last step in the
composition, we do not need to push a new continuation point onto the call stack. Rather the template g
finishes by calling the continuation point left on the call stack by the function that called f .

Primitive Recursion
For primitive recursion, let k 0 and let

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 7

- f(n1, … , nk , 0) = g(n1, … , nk),

- f(n1, … , nk , m +1) = h(n1, … , nk , m, f(n1, … , nk , m))

We code f as follows:

<xsl:template name="f">
 <xsl:param name="n-1"/>
 …
 <xsl:param name="n-k"/>
 <xsl:param name="m"/>
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:if test='$m = 0'>
 <xsl:call-template name="g">
 <xsl:with-param name="n-1"/ select="$n-1"/>
 …
 <xsl:with-param name="n-k" select="$n-k"/>
 <xsl:with-param name="call-stack" select="$call-stack"/>
 <xsl:with-param name="value-stack" select="$value-stack"/>
 </xsl:call-template>
 </xsl:if>
 <xsl:call-template name="f">
 <xsl:with-param name="n-1" select="$n-1"/>
 …
 <xsl:with-param name="n-k" select="$n-k"/>
 <xsl:with-param name="m" select="$m - 1"/>
 <xsl:with-param name="call-stack" select="concat('f-c/',$call-stack)"/>
 <xsl:with-param name="value-stack"
 select="concat($n-1,'/',… ,'/',$n-k,'/',$m - 1,'/',$value-stack)"/>
 </xsl:call-template>
</xsl:template>

And the template to call h :

<xsl:template name="f-c">
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:variable name="rv" select="substring-before($value-stack,'/')"/>
 <xsl:variable name="vs-1" select="substring-after($value-stack,'/')"/>
 <xsl:variable name="n-1" select="substring-before($vs-1,'/')"/>
 <xsl:variable name="vs-2" select="substring-after($vs-1,'/')"/>
 <xsl:variable name="n-2" select="substring-before($vs-2,'/')"/>
 <xsl:variable name="vs-3" select="substring-after($vs-2,'/')"/>
 …
 <xsl:variable name="n-k" select="substring-before($vs-k,'/')"/>
 <xsl:variable name="vs-k+1" select="substring-after($vs-k,'/')"/>
 <xsl:variable name="m" select="substring-before($vs-k+1,'/')"/>
 <xsl:variable name="vs" select="substring-after($vs-k+1,'/')"/>
 <xsl:call-template name="h">
 <xsl:with-param name="n-1" select="$n-1"/>
 …
 <xsl:with-param name="n-k" select="$n-k"/>
 <xsl:with-param name="n-k+1" select="$m"/>
 <xsl:with-param name="n-k+2" select="$rv"/>
 <xsl:with-param name="call-stack" select="$call-stack"/>
 <xsl:with-param name="value-stack" select="$vs"/>
 </xsl:call-template>
</xsl:template>

In principle, template f provides a division by cases. If the last argument, m, is equal to 0, the template
for g is called. If m is greater then 0, firstly template f is called recursively with m decreased by 1 and
then the template for h is called to complete the computation. Thus template f tests if m = 0. If so, it
calls the template for g with parameters n1, … , nk , the call stack and the value stack. If m 0, it pushes
the parameters n1, … , nk , m -1 onto the value stack for further use and calls itself recursively with
parameters n1, … , nk , m -1, the call stack with continuation point `f-c' pushed onto it, and the value
stack.

Template f-c is called at the end of the recursive computation of f(n1, … , nk , m) and hence the value
of f(n1, … , nk , m) lies on top of the value stack followed by the parameters n1, … , nk , m . These
elements are taken from the stack and stored in local variables. Then the template for h is called with
parameters n1, … , nk , m, f(n1, … , nk , m) and the call stack and value stack. Because the computation

Kepser

page 8 Extreme Markup Languages 2004

of h is the last step in the primitive recursion, we do not need to push a new continuation point onto the
call stack. Rather the template h finishes by calling the continuation point left on the call stack by the
function that called f .

-Recursion
For -recursion, let k 0 and f defined as f(n1, … , nk) =

- the least m such that g(n1, … , nk , m) = 0, if such an m exists,

- 0 otherwise.

We code f as follows:

<xsl:template name="f">
 <xsl:param name="n-1"/>
 …
 <xsl:param name="n-k"/>
 <xsl:param name="m" select="0"/>
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:call-template name="g">
 <xsl:with-param name="n-1" select="$n-1"/>
 …
 <xsl:with-param name="n-k" select="$n-k"/>
 <xsl:with-param name="n-k+1" select="$m"/>
 <xsl:with-param name="call-stack" select="concat('mu-f/',$call-stack)"/>
 <xsl:with-param name="value-stack"
 select="concat($n-1,'/',… ,'/',$n-k,'/',$m,'/',$value-stack)"/>
 </xsl:call-template>
</xsl:template>

And the template to process the result of the call to g :

<xsl:template name="mu-f">
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack"/>
 <xsl:variable name="rv" select="substring-before($value-stack,'/')"/>
 <xsl:variable name="vs-1" select="substring-after($value-stack,'/')"/>
 <xsl:variable name="n-1" select="substring-before($vs-1,'/')"/>
 <xsl:variable name="vs-2" select="substring-after($vs-1,'/')"/>
 <xsl:variable name="n-2" select="substring-before($vs-2,'/')"/>
 <xsl:variable name="vs-3" select="substring-after($vs-2,'/')"/>
 …
 <xsl:variable name="n-k" select="substring-before($vs-k,'/')"/>
 <xsl:variable name="vs-k+1" select="substring-after($vs-k,'/')"/>
 <xsl:variable name="m" select="substring-before($vs-k+1,'/')"/>
 <xsl:variable name="vs" select="substring-after($vs-k+1,'/')"/>
 <xsl:if test='$rv != 0'>
 <xsl:call-template name="f">
 <xsl:with-param name="n-1" select="$n-1"/>
 …
 <xsl:with-param name="n-k" select="$n-k"/>
 <xsl:with-param name="m" select="$m + 1"/>
 <xsl:with-param name="call-stack" select="$call-stack"/>
 <xsl:with-param name="value-stack" select="$vs"/>
 </xsl:call-template>
 </xsl:if>
 <xsl:call-template name="substring-before($call-stack, '/')">
 <xsl:with-param name="call-stack"
 select="substring-after($call-stack, '/')"/>
 <xsl:with-param name="value-stack" select="concat($m,'/',$vs)"/>
 </xsl:call-template>
</xsl:template>

Function f is coded by a loop on parameter m starting with 0. The core of the loop consists of a call to g
with the current value of m . If we found a null for g, we are finished and return m . If not, we increment m
by 1 and loop on. Thus the template for f pushes the parameters n1, … , nk , m onto the value stack for
later use by mu-f, pushes the continuation point `mu-f' onto the call stack and calls the template for g
with parameters n1, … , nk , m, the call stack and value stack. Note the line

<xsl:param name="m" select="0"/>

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 9

in the parameter block of template f. Here, we use the fact that a template may be called with some
parameters left uninstantiated by the caller. The first call to f will have m uninstantiated, because m is
the loop variable. The select-part provides a default value of 0. In later calls to f by template mu-f
the variable m will be instantiated.

Template mu-f is called at the end of the computation of g . The top of the value stack consists of the
elements g(n1, … , nk , m), n1, … , nk , m . These are popped from the stack and stored in local
variables. If g(n1, … , nk , m) 0, we call f recursively with parameters n1, … , nk , m +1, the call stack
and the value stack to loop on. If g(n1, … , nk , m) = 0 we found the null we are looking for, push m as
return value on the value stack and finish by calling the next continuation point from the call stack. Note
that if g(n1, … , nk , m) has no null, we loop forever.

A Complete Style Sheet
The above section showed the translation of recursive functions into XSLT. There are still two minor
items missing to complete the translation. First, we have to provide some framework information to get a
well-defined style sheet. And second, we want to output the result of the computation. We therefore
introduce additional XSLT-code at the beginning and end of the translation. Assuming that we want to
calculate f(m1, m2, … , mk) we introduce before the translation

<?xml version="1.0"?>

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

<xsl:output method="text" omit-xml-declaration="yes"/>

<xsl:template match="/">
 <xsl:call-template name="f">
 <xsl:with-param name="n-1" select="m-1"/>
 <xsl:with-param name="n-2" select="m-2"/>
 …
 <xsl:with-param name="n-3" select="m-k"/>
 <xsl:with-param name="call-stack select="out/"/>
 <xsl:with-param name="value-stack" select="/">
 </xsl:call-template>
</xsl:template>

<xsl:template name="out">
 <xsl:param name="call-stack"/>
 <xsl:param name="value-stack">
Result: <xsl:value-of select="substring-before($value-stack,'/')"/>
<xsl:text>
</xsl:text>
</xsl:template>

The <xsl:output method=… /> is just there to produce a nicer output. The first template is there to
start the computation. It matches with the super-root of the input document, the only node that must be
present at every input document, and the first node to be processed. It calls the template for f, the
function we want to compute, passing the arguments to f . And it places the call to the output template on
the call stack to ensure that the output routine will be called at the end of the computation. The second
template is the output template. It pops the result of the computation from the value stack and prints it
out.

After the translation we just add

</xsl:transform>

to complete the style sheet.

§ Correctness
Proposition 1 Let f be a k -ary -recursive function and n1, … , nk . After calling the XSLT-coding
of f, the top of the value stack is the value of f(n1, … , nk).

Proof

Kepser

page 10 Extreme Markup Languages 2004

Since -recursive functions are defined by structural recursion, the structure of the proof follows this
recursion. The base case are of course the basic functions.

If f is a basic function, then f(n1, … , nk) is directly pushed onto the value stack: If f is zerok , then the
line

<xsl:with-param name="value-stack" select="concat(’0/’,$value-stack)"/>

sets the returned value stack to be the old one with a 0 pushed onto it. If f is k, j , then the line

<xsl:with-param name="value-stack" select="concat($n-j,’/’,$value-stack)"/>

sets the returned value stack to be the old one with the value of the parameter nj pushed onto it. If f is
succ, then the line

<xsl:with-param name="value-stack" select="concat($n + 1,’/’,$value-stack)"/>

sets the returned value stack to be the old one with the value of the parameter n + 1 pushed onto it.

If f is defined by primitive recursion, we distinguish two cases:

1. If nk = 0 then the template for f calls the template for g handing over all parameters needed. By
hypothesis we can assume that after calling the coding of g there is g(n1, … , nk -1) on top of the
value stack. Since f(n1, … , nk -1,0) = g(n1, … , nk -1) the value of f(n1, … , nk) forms the top the
value stack.

2. If nk > 0 then the template for f calls itself recursively with parameters n1, … , nk -1, nk -1 pushing
f-c on the call stack and the parameters n1, … , nk -1, nk -1 on the value stack. By hypothesis we
can assume that at the end of the recursive call to f the value of f(n1, … , nk -1, nk -1) will be on top
of the value stack, and the next elements are the parameters n1, … , nk -1, nk -1. Since f-c is on top
of the call stack, computation continues with the template f-c. This template calls h with
parameters n1, … , nk -1, nk -1, f(n1, … , nk -1, nk -1). By hypothesis we can assume that at the end
of the call to h there will be h(n1, … , nk -1, nk -1, f(n1, … , nk -1, nk -1)), on the value stack, which
is by definition equal to f(n1, … , nk).

If f is defined by -recursion then the template of f calls the template of g with parameters n1, … , nk , m
where m = 0 initially, pushing mu-f on the call stack and the parameters n1, … , nk , m on the value
stack. By hypothesis we can assume that at the end of the call to g there will be g(n1, … , nk , m) on top
of the value stack followed by the parameters n1, … , nk , m . Computation continues with the call to the
template mu-f. This template introduces a case distinction depending on the top of the value stack. If g(n1,
… , nk , m) = 0 then m is pushed on the value stack, and computation is complete. This m is by definition
the value of f(n1, … , nk). If g(n1, … , nk , m) 0 then then the template for f is called recursively with
parameters n1, … , nk , m +1. By hypothesis we can assume that at the end of the recursive call to f there
will be f(n1, … , nk) on top of the value stack.

If f is defined by composition as f(n1, … , nk) = g(h1(n1, … , nk), … , hl (n1, … , nk)), then the
template for f calls the template for h1 with parameters n1, … , nk pushing f-s-1 on the call stack and
the parameters n1, … , nk on the value stack. By hypothesis we can assume that at the end of the call to h1

the value h1(n1, … , nk) will be on top of the value stack followed by n1, … , nk . Computation will
continue with the template f-s-1.

For 0 < j < l - 1 the template f-s-j was called at the end of the call to hj so that we can assume that hj (n1, … , nk)
is on top of the value stack followed by the parameters n1, … , nk . The template f-s-j pops all those
values from the value stack and stores them in local variables. It pushes hj (n1, … , nk) back onto the
value stack and thereafter also pushes n1, … , nk onto the value stack, so that the order of the return
value and the parameters is now reversed. The template calls the template for hj +1 with parameters n1, … , nk

pushing f-s-j+1 onto the call stack.

The template f-s-l-1 was called at the end of the call to hl -1 so that we can assume that hl -1(n1, … , nk)
is on top of the value stack followed by the parameters n1, … , nk . The template f-s-l-1 pops all those

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 11

values from the value stack and stores them in local variables. It pushes hl -1(n1, … , nk) back onto the
value stack and calls the template for hl with parameters n1, … , nk pushing f-s-l onto the call stack.

The template f-s-l was called at the end of the call to hl so that we can assume that the top of the
value stack now consists of the values hl (n1, … , nk), hl -1(n1, … , nk), hl -2(n1, … , nk), … , h1(n1, … ,
nk). The template f-s-l takes these from the value stack and uses them in the right order as parameters
in the call to g. At the end of the call to g we can assume that the top of the value stack consists of g(h1(n1, … ,
nk), … , hl (n1, … , nk)).

This completes the proof.

Completeness of the translation is simply given by the fact that we provide a translation that follows the
structural definition of -recursive functions.

It may be astonishing that the only output of the coding is a single natural number whereas normally
XSLT produces an XML document. Why is there no need to show that XSLT can produce arbitrary
XML documents? The answer is that we have done that, but we have done that in an indirect fashion.
The argument follows the main idea in the proof that -recursive functions themselves are Turing-
complete. The key idea of how to emulate arbitrary Turing machine computations with recursive
arithmetic functions is Gödelisation, i.e., the (injective) coding of arbitrary strings by natural numbers.
The arithmetics available allows one to pull the intended “meaning” of a string out of its numerical
coding. Hence, manipulation of stings can thereafter be emulated by computations on natural numbers.
The case is similar for XSLT. The fact that we can perform arbitrary computations on natural numbers
and output the resulting number means we can produce arbitrary XML documents. In other words, we
output XML documents, but not as clear text, but rather in a numerical coding. For practical purposes
this coding would have to be made explicit. But from a theoretical point of view there is no difference
between an output in clear text and an output as a coding by natural numbers as long as one can be
computed from the other.

§ Coding -Recursive Functions in XSLT Using Stylesheet Functions
In opposite to the assumption in Section “Coding -Recursive Functions in XSLT”, there is a way to
define functions in XSLT 2.0. Actually there are two. Firstly, templates can return atomic values such as
integer values. And secondly, one can define stylesheet functions that can be used at each place where an
XPath function can be used. Since the option to return a value from a template call is a bit unusual, we
provide a simple example on how to do this.

<xsl:template name="f">
 <xsl:param name="i"/>
 <xsl:value-of select="2*$i"/>
</xsl:template>

<xsl:template name="g">
 <xsl:variable name="j" as="xs:integer">
 <xsl:call-template name="f">
 <xsl:with-param name="i" select="3"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- now, $j contains the value of f(3), namely 6 -->
</xsl:template>

The method works as follows. Template f produces a temporary tree (see [XSLT 2.0], Section 9.4)
consisting of a single element node with name 2*$i. This is not the same as the numeric value 2*$i. This
temporary tree is the content of the variable j in template g, but the content is converted to an integer.
The conversion is possible since the tree consists of a single element with an integer as name of the
element. Therefore variable j is bound to the integer value of f(3). Using this method, -recursive
functions can be coded without using stacks and without complicated arrangements of continuation
points for subsequent computations. But there is an even simpler way. If one uses stylesheet functions,
the coding can be done straight forwardly.

Stylesheet functions are functions defined by the user or programmer inside a stylesheet (see [XSLT 2.0],
Section 10.3). They can be used at every place where an XPath function can be used. Hence they extend
the range of XPath functions. Definition of parameters and variables as well as the control flow elements
are shared with template definitions. We will use the typing facilities that XSLT offers to indicate clearly

Kepser

page 12 Extreme Markup Languages 2004

that we do computations on natural numbers. All parameters and return value are of this datatype. It is
specifed as nonNegativeInteger in [XML Schema].

In the following, we use the abbreviation Nat for the datatype xs:nonNegativeInteger to enhance
readability. Since all stylesheet functions must have a prefixed name, we choose the prefix mu: for -
recursive functions.

Basic functions

Let k 0. We code zerok (n1, … , nk) as follows:

<xsl:function name="mu:zero-k" as="Nat">
 <xsl:param name="n-1" as="Nat"/>
 …
 <xsl:param name="n-k" as="Nat"/>
 0
</xsl:function>

Let k j > 0. We code k, j (n1, … , nk) as follows:

<xsl:function name="mu:pi-k-j" as="Nat">
 <xsl:param name="n-1" as="Nat"/>
 …
 <xsl:param name="n-k" as="Nat"/>
 $n-j
</xsl:function>

We code succ(n) as follows:

<xsl:function name="mu:succ" as="Nat">
 <xsl:param name="n" as="Nat"/>
 <xsl:value-of select="$n + 1"/>
</xsl:function>

Composition

Let k, l 0. We code the composition f(n1, … , nl) = g(h1(n1, … , nl), … , hk (n1, … , nl)) as follows:

<xsl:function name="mu:f" as="Nat">
 <xsl:param name="n-1" as="Nat"/>
 …
 <xsl:param name="n-l" as="Nat"/>
 <xsl:value-of select="mu:g(mu:h-1($n-1,… ,$n-l), … , mu:h-k($n-1,… ,$n-l))"/>
</xsl:function>

Primitive recursion

For primitive recursion, let k 0 and let

- f(n1, … , nk , 0) = g(n1, … , nk),

- f(n1, … , nk , m +1) = h(n1, … , nk , m, f(n1, … , nk , m))

We code f as follows:

<xsl:function name="mu:f" as="Nat">
 <xsl:param name="n-1" as="Nat"/>
 …
 <xsl:param name="n-k" as="Nat"/>
 <xsl:param name="m" as="Nat"/>
 <xsl:choose>
 <when test="$m = 0">
 <xsl:value-of select="mu:g($n-1, … ,$n-k)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="mu:h($n-1, … ,$n-k,$m - 1, mu:f($n-1, … ,$n-k,$m - 1))"/>
 </xsl:otherwise>

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 13

 </xsl:choose>
</xsl:function>

-recursion

For -recursion, let k 0 and f defined as f(n1, … , nk) =

- the least m such that g(n1, … , nk , m) = 0, if such an m exists,

- 0 otherwise.

We code f as follows:

<xsl:function name="mu:f" as="Nat">
 <xsl:param name="n-1" as="Nat"/>
 …
 <xsl:param name="n-k" as="Nat"/>
 <xsl:value-of select="mu:mu-f($n-1, … , $n-k, 0)"/>
</xsl:function>

<xsl:function name="mu:mu-f" as="Nat">
 <xsl:param name="n-1" as="Nat"/>
 …
 <xsl:param name="n-k" as="Nat"/>
 <xsl:param name="m" as="Nat"/>
 <xsl:choose>
 <when test="mu:g($n-1, … ,$n-k, $m) = 0">
 <xsl:value-of select="$m"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="mu:mu-f($n-1, … ,$n-k,$m + 1)"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

The stylesheet function mu:f is a wrapping function. It just adds one more argument, the one on which
we minimise, and calls mu:mu-f, which is the function that really computes the smallest null (if it
exists). The wrapper is necessary because there cannot be any optional arguments in a stylesheet function
definition.

§ Coding -Recursive Functions in XQuery
The following coding of -recursive functions shows that XQuery [XQuery 1.0] is also Turing-
complete. XQuery is recommended by the W3C as a query language that human users can use to query
XML documents. Coding -recursive functions in XQuery is simpler than in XSLT without functions.
Because XQuery offers full recursion, we do not need to emulate it by means of stacks. XQuery is a
strongly typed language; parameters and return values of a function have types. In our case, the type for
all parameters and return values is nonNegativeInteger. This data type is exactly the one of the natural
numbers, as defined in [XML Schema].

The syntax for defining new functions in XQuery is similar to the one of the programming language Java
or C. The head of a function definition has the prototypical format

define function fname (Parameters) returns Datatype

where fname is the name of the function, Datatype the data type of the return value of the function, and
Parameters is a coma separated sequence of Datatype $ Variablename pairs. The body of a function
definition consists of a sequence of expressions enclosed by braces ({}). The only structure providing
expression of XQuery we need is the conditional

• if (Expr1) then Expr2 else Expr3

meaning obviously that if Expr1 evaluates to true, Expr2 is evaluated, otherwise Expr3 is evaluated.
XQuery provides the function eq for testing equality of two numerical values.

Again we use the abbreviation Nat for the datatype xs:nonNegativeInteger to enhance
readability.

Basic functions

Kepser

page 14 Extreme Markup Languages 2004

Let k 0. We code zerok (n1, … , nk) as follows:

define function zero-k(Nat $n-1, … , Nat $n-k) returns Nat
{ 0 }

Let k j > 0. We code k, j (n1, … , nk) as follows:

define function pi-k-j(Nat $n-1, … , Nat $n-k) returns Nat
{ $n-j }

We code succ(n) as follows:

define function succ(Nat $n) returns Nat
{ $n + 1 }

Composition

Let k, l 0. We code the composition f(n1, … , nl) = g(h1(n1, … , nl), … , hk (n1, … , nl)) as follows:

define function f(Nat $n-1, … , Nat $n-l) returns Nat
{
 g(h-1($n-1,… ,$n-l), … , h-k($n-1,… ,$n-l))
}

Primitive recursion

For primitive recursion, let k 0 and let

- f(n1, … , nk , 0) = g(n1, … , nk),

- f(n1, … , nk , m +1) = h(n1, … , nk , m, f(n1, … , nk , m))

We code f as follows:

define function f(Nat $n-1, … , Nat $n-k, Nat $m) returns Nat
{
 if ($m eq 0) then g($n-1,… ,$n-k)
 else h($n-1,… ,$n-k,$m - 1, f($n-1,… ,$n-k,$m - 1))
}

-recursion

For -recursion, let k 0 and f defined as f(n1, … , nk) =

- the least m such that g(n1, … , nk , m) = 0, if such an m exists,

- 0 otherwise.

We code f as follows:

define function f(Nat $n-1, … , Nat $n-k) returns Nat
{
 mu-f($n-1, … ,$n-k,0)
}

define function mu-f(Nat $n-1, … , Nat $n-k, Nat $m) returns Nat
{
 if (g($n-1, … ,$n-k,$m) eq 0)
 then $m
 else mu-f($n-1, … ,$n-k,$m + 1)
}

That -recursion is coded by two functions is a consequence of the fact that XQuery does not offer
optional arguments. So function f serves as an interface function to call mu-f, which has one parameter
more, the one on which we do minimisation.

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 15

The codings of -recursive functions in XQuery and in XSLT using stylesheet functions are obviously
very similar. This is a consequence of the fact that the structural means used in both codings are similar.
After all, we code functions (-recursive ones) using functions. Existing differences can mostly be
attributed to the differences in syntax. The only exception may perhaps be that the if-then-else
construct of XQuery is a little bit simpler than the xsl:choose construct of XSLT.

§ Conclusion
We provided a simple proof for the Turing-completeness of XSLT and XQuery by coding -recursive
functions. XPath, being a component of both, provides the arithmetics while XSLT and XQuery provide
the recursion. In the case of XQuery the coding is straight-forward, because XQuery allows the
definition of (recursive) functions. For XSLT, there was a little more work to be done – at least, if one
assumes that there are no functions, – because we had to hand-code the continuation point of a
computation following a recursive function call using a call stack.

There is probably quite a number of ways to prove Turing-completeness of both XQuery and XSLT, just
because the languages provide so many facilities. We think the proof presented for XQuery is likely to
be the shortest one can find. It is a short one-to-one translation. We are also of the opinion that it will be
difficult to find a shorter proof for XSLT. Admitted we use two stacks and a two-stack machine is
Turing-complete. But a complete coding of such a machine in XSLT would not be shorter than the one
presented here. Most of the “length” of the coding is to be assigned to the fact that XML and XSLT are
so very verbose, a problem that every coding faces. Apart from that, our coding is really just recursive
function calls and passing call and value stack parameters around. And the coding that uses stylesheet
functions is as concise as can be.

Since both XSLT and XQuery are Turing-complete, they are interchangeable on a theoretical level. From a
user's perspective, there are clear differences. A recursive transformation of a document is simpler to
define in XSLT, while queries can be coded quicker in XQuery. XQuery is strictly typed, whereas XSLT
offers the options of either using a strict typing regiment or relying on built-in type conversions. For
database applications, strict typing is probably the preferable choice. But for document applications, it is
less clear which option to choose. The use of XML syntax for XSLT programs allows to feed these these
programs as input into other XML applications or even other XSLT programs. Thus the XML syntax can
be regarded as advantageous for the automatic processing of XSLT programs. On the other hand, XSLT
programs are very cumbersome to read or write for humans, whereas the XQuery syntax is a lot more
human user friendly.

XSLT and XQuery both use a navigational approach in the sense that their variable binding paradigm
requires the querier to specify path navigations through the document. In contrast to this, there are query
languages that are pattern based. Their variable binding paradigm is that of mathematical logics, i.e., a
querier specifies patterns including variables. Arguably, these make complex queries easier to specify
and read. Examples are the languages UnQL [UnQL] and Xcerpt [Xcerpt], which is based on logic
programming concepts.

And there is finally the question about how much expressive power is required. There are arguments
(see, e.g., [Bosak]) that a query language that is to be convenient for users almost naturally ends up being
Turing-complete. From the point of view of automatic querying and conversion of documents or
databases it is not too difficult to see this. But there is another view on this issue, which comes from
experience with traditional relational databases and SQL. The complexity issues involved with Turing-
complete query languages are not neglectable when documents are large. It is not clear that a Turing-
complete query language is the right choice if queries that make full use of the expressive power of the
language do not get answered in a suitable amount of time. The alternative, which was also chosen in the
traditional database framework, is the restriction of the expressive power. Perhaps the best way to cope
with this problem is to say that these alternatives may not necessarily be mutually exclusive. That is to
say, there are definitely applications for Turing-complete query languages, and XSLT and XQuery serve
their purpose well. But there are very likely also applications that do not demand the expressive power
XSLT or XQuery offer. We therefore think it is worthwhile to analyse user demands and try to define a
query language that has a restricted expressive power and thus fits into a lower complexity class. If there
is a suitable amount of applications for such a language, the definition of such a language would make
sense because applications could be processed considerably faster without restricting user demands.

Kepser

page 16 Extreme Markup Languages 2004

Acknowledgements
I would like to thank Uwe Mönnich, Frank Morawietz, Frank Neven, Helmut Seidl, Klaus Schulz, and
Thomas Schwentick for helpful comments and interesting discussions. I would also like to thank several
anonymous referees, whose comments and suggestions helped improving this paper.

Bibliography
[Bex] Geert Jan Bex, Sebastian Maneth, and Frank Neven. A Formal Model for an Expressive

Fragment of XSLT. Information Systems, 27(1):21-39, 2002.

[Bosak] Jon Bosak. XML, Java, and the Future of the Web. Technical report, Sun Microsystems, 1997.
http://www.ibiblio.org/pub/sun-info/standards/xml/why/xmlapps.htm.

[Kleene] Stephen Cole Kleene. Introduction to Metamathematics. North-Holland, 1952.

[Lewis] Harry Lewis and Christos Papadimitriou. Elements of the Theory of Computation. Prentice-
Hall, 2nd edition, 1998.

[Neven] Frank Neven. On the Power of Walking for Querying Tree-Structured Data. In Lucian Popa,
editor, Proceedings PODS 2002, pp. 77-84, 2002.

[Quilt] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In Dan Suciu and Gottfried Vossen, editors, The World Wide Web and
Databases. Third International Workshop WebDB2000, pp. 1-25, Springer, LNCS 1997, 2000.
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html

[TMML] Robert Lyons. Turing Machine Markup Language. 2001. http://www.unidex.com/turing/

[UnQL] Peter Buneman, Mary Fernández, and Dan Suciu. UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000), 76-110.

[Xcerpt] Sacha Berger, François Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt and visXcerpt:
From Pattern-Based to Visual Querying of XML and Semistructured Data. In Proceedings of 29th
Intl. Conference on Very Large Databases, 2003.

[XML] World Wide Web Consortium. Extensible Markup Language (XML). Technical report, W3C,
1999. http://www.w3.org/XML/.

[XML Schema] Paul Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. Technical report,
W3C, 2001. http://www.w3.org/TR/xmlschema-2/.

[XPath 1.0] James Clark and Steve DeRose. XML Path Language (XPath) 1.0. Technical report, W3C,
1999. http://www.w3.org/TR/xpath.

[XPath 2.0] Anders Berglund, Scott Boag, Don Chamberlin, Mary Fernández, Michael Kay, Jonathan
Robie, and Jérôme Siméon. XML Path Language (XPath) 2.0. Technical report, W3C, 2003. http://
www.w3.org/TR/xpath20/.

[XQuery 1.0] Scott Boag, Don Chamberlin, Mary Fernández, Daniela Florescu, Jonathan Robie, and
Jérôme Siméon. XQuery 1.0: An XML Query Language. Technical report, W3C, 2003. Working
draft, http://www.w3.org/TR/xquery/.

[XSLT 1.0] James Clark. XSL Transformations (XSLT), Version 1.0. Technical report, W3C, 1999.
http://www.w3.org/TR/xslt.

[XSLT 2.0] Michael Kay. XSL Transformations (XSLT), Version 2.0. Technical report, W3C, 2003.
http://www.w3.org/TR/xslt20/.

A Simple Proof for the Turing-Completeness of XSLT and XQuery

Extreme Markup Languages 2004 page 17

http://www.ibiblio.org/pub/sun-info/standards/xml/why/xmlapps.htm
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html
http://www.unidex.com/turing/
http://www.w3.org/XML/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/

The Author

Stephan Kepser
University of Tübingen, SFB 441
Nauklerstr. 35
72074
Tübingen
Germany
kepser@sfs.uni-tuebingen.de
http://tcl.sfs.uni-tuebingen.de/~kepser

Stephan Kepser is a research associate at the linguistics department at the University of Tübingen.
His main interests are model theoretic and complexity theoretic properties of linguistic theories and
the design and implementation of query languages for linguistic corpora and XML documents. He
received his Ph.D. in computational linguistics from the University of Munich in 1998.

Extreme Markup Languages 2004
Montréal, Québec, August 2-6, 2004

This paper was formatted from XML source via XSL
by Mulberry Technologies, Inc.

Kepser

page 18 Extreme Markup Languages 2004

mailto:kepser@sfs.uni-tuebingen.de
http://tcl.sfs.uni-tuebingen.de/~kepser

