Capturing TAGs Model-Theoretically

Uwe Mönnich and Frank Morawietz

{um,frank}@sfs.uni-tuebingen.de http://tcl.sfs.uni-tuebingen.de/

Seminar für Sprachwissenschaft Arbeitsbereich Theoretische Computerlinguistik Universität Tübingen

Outline

- Motivation and Theoretical Background
- TAGs
- (Monadic) Context-Free Tree Grammars
- From (M)CFTGs to Regular Tree Grammars
- Interpreting the Intended Structures

Overview

Linguistic Models/Theories

GB, Minimalism, TAG, HPSG

- Logical Characterization of the lifted Monadic CFTG-Languages
- Retrieval of the Intended Structures via MSO-Definable Transductions

- Logical Characterization of the lifted Monadic CFTG-Languages
- Retrieval of the Intended Structures via MSO-Definable Transductions
- trees as relational structures

- Logical Characterization of the lifted Monadic CFTG-Languages
- Retrieval of the Intended Structures via MSO-Definable Transductions
- trees as relational structures
- trees as elements of a free algebra

- Logical Characterization of the lifted Monadic CFTG-Languages
- Retrieval of the Intended Structures via MSO-Definable Transductions
- trees as relational structures
- trees as elements of a free algebra
- trees as elements of a free clone (Lawvere theory)

Tree Adjoining Grammars

Tree Adjoining Grammars

$$\langle V_N, V_T, S, I, \mathcal{A} \rangle$$

 V_N is a finite set of nonterminals

 V_T is a finite set of terminals

 $S \in V_N$ is the start symbol

I is a finite set of initial trees

 \mathcal{A} is a finite set of auxiliary trees

Def'n from Joshi and Schabes 1997

Derivation Steps in TAGs

TAG for $a^nb^nc^nd^n$

$$\langle \{S\}, \{a,b,c,d\}, S, \{\alpha\}, \{\beta\} \rangle$$

$$\alpha = \begin{cases} S \\ \varepsilon \end{cases}$$

Tree Grammars

Tree Grammars (CFTG & RTG)

A context-free tree grammar Γ is a 5-tuple $\langle \Sigma, \mathbf{F}, S, \mathbf{X}, \mathbf{P} \rangle$, with

 Σ , **F** ranked alphabets of *inoperatives* and *operatives*;

 $S \in \mathbf{F}$ the starting symbol;

X a countable set of variables; and

P a set of productions.

Tree Grammars (CFTG & RTG)

The $p \in \mathbf{P}$ have the form

$$F(x_1,\cdots,x_n)\longrightarrow t$$

with $F \in \mathbf{F}$, $x_1, \dots, x_n \in \mathbf{X}$, and t a term over $\Sigma \cup \mathbf{F} \cup \{x_1, \dots, x_n\}$.

An application of a rule $F(x_1, \dots, x_n) \longrightarrow t$ "rewrites" a subtree rooted in F as the tree t with its respective variables substituted by F's daughters.

Tree grammars with $\mathbf{F}_n = n \neq 0$, are called *regular*.

Derivation Steps in CFTGs

Monadic CFTGs

$$A \longrightarrow a$$

$$A \longrightarrow B(C)$$

$$A(x) \longrightarrow a(B_1, \dots, B_{i-1}, x_i, B_{i+1}, \dots, B_n)$$

$$A(x) \longrightarrow B_1(B_2(\dots B_n(x) \dots))$$

Fact

Theorem (Mönnich 1997, Fujiyoshi & Kasai 2000)

TAGs are equivalent to monadic CFTGs.

Monadic CFTG \mathcal{G} for $a^nb^nc^nd^n$

$$\mathcal{G} = \langle \{a, b, c, d, \varepsilon, S_t, S_t^0\}, \{S, S', \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{S}_1, \overline{S}_2\}, S', \{x\}, \mathbf{P} \rangle$$

$$S' \longrightarrow S(\varepsilon)$$
 $S(x) \longrightarrow \overline{S}_1(S(\overline{S}_2(x)))$
 $S(x) \longrightarrow S_t^0(x)$
 $\overline{S}_1(x) \longrightarrow S_t(\overline{a}, x, \overline{d})$
 $\overline{S}_2(x) \longrightarrow S_t(\overline{b}, x, \overline{c})$
 $\overline{a} \longrightarrow a$
 $\overline{b} \longrightarrow b$
 $\overline{c} \longrightarrow c$
 $\overline{d} \longrightarrow d$

$$S' \longrightarrow S(\varepsilon)$$

$$S(x) \longrightarrow \overline{S}_1(S(\overline{S}_2(x)))$$

Regular Tree Grammars

 $\Gamma = \langle \Sigma, \mathsf{F}_0, S, \mathsf{P} \rangle$ where

$$\Sigma = \langle \Sigma_{w,s} | w \in \mathcal{S}^*, s \in \mathcal{S} \rangle$$

$$F_0 = \langle F_{\varepsilon,s} | s \in \mathcal{S} \rangle$$

 $S \in F_0$ is the starting symbol

P is a set of productions

The $p \in P$ have the form

$$F \longrightarrow t$$

with $F \in F_{\varepsilon,s}$, and t a term over $T(\Sigma \cup F_0)$.

Derivation Steps in RTGs

From (M)CFTGs to RTGs

Overview of the Two-Step Approach

Derivation Trees (MSO, RTG, FSTA)

Mildly-Contextsensitive Structures

Overview of the Two-Step Approach

Overview of the Two-Step Approach

From (M)CFTGs to RTGs: Intuition

- simple primitive-recursive function
- control structure is made visible
- all function symbols become constants
- the resulting grammar is is regular,
- and therefore expressible by an MSO formula
- and can be translated into an FSTA.

From (M)CFTGs to RTGs: Intuition

- simple primitive-recursive function
- control structure is made visible
- all function symbols become constants
- the resulting grammar is is regular,
- and therefore expressible by an MSO formula
- and can be translated into an FSTA.

Lifting

For $k \geq 0$, LIFT $_k^{\Sigma}: T(\Sigma, \mathbf{X}_k) \to T(\Sigma^L, k)$ is defined as follows:

$$\text{LIFT}_k^\Sigma(x_i) = \pi_i^k$$

$$\text{LIFT}_k^\Sigma(f) = c_{(0,k)}(f') \text{ for } f \in \Sigma_0$$

$$\text{LIFT}_k^\Sigma(f(t_1,\ldots,t_n)) =$$

$$c_{(n,k)}(f',\text{LIFT}_k^\Sigma(t_1),\ldots,\text{LIFT}_k^\Sigma(t_n))$$
 for $f \in \Sigma_n, n \geq 1$

The Lifted Example Grammar G'

$$S' \longrightarrow c_{(1,0)}(S, \varepsilon)$$
 $S \longrightarrow c_{(1,1)}(\overline{S}_1, c_{(1,1)}(S, c_{(1,1)}(\overline{S}_2, \pi_1^1)))$
 $S \longrightarrow c_{(1,1)}(S_t^0, \pi_1^1)$
 $\overline{S}_1 \longrightarrow c_{(3,1)}(S_t, a, \pi_1^1, d)$
 $\overline{S}_2 \longrightarrow c_{(3,1)}(S_t, b, \pi_1^1, c)$
 $S' \longrightarrow S(\varepsilon)$
 $S(x) \longrightarrow \overline{S}_1(S(\overline{S}_2(x)))$
 $S(x) \longrightarrow S_t(\overline{S}_1(x))$
 $\overline{S}_1(x) \longrightarrow S_t(\overline{S}_1(x), x, \overline{S}_1(x))$

$$S' \longrightarrow c_{(1,0)}(S, \varepsilon)$$

$$S \longrightarrow c_{(1,1)}(\overline{S}_1, c_{(1,1)}(S, c_{(1,1)}(\overline{S}_2, \pi_1^1)))$$

$$S \longrightarrow c_{(1,1)}(\overline{S}_1, c_{(1,1)}(S, c_{(1,1)}(\overline{S}_2, \pi_1^1)))$$

$$S \longrightarrow c_{(1,1)}(S_t^0, \pi_1^1)$$

$$\overline{S}_1 \longrightarrow c_{(3,1)}(S_t, a, \pi_1^1, d)$$
 $\overline{S}_2 \longrightarrow c_{(3,1)}(S_t, b, \pi_1^1, c)$

An example derivation of G' (cont'd)

Coding RTGs in MSO Logic (Thomas 1997)

- ullet Define a tree automaton ${\mathfrak A}_{{\mathcal G}'}$ from the RTG ${\mathcal G}'$
- Code its behaviour in $\phi_{\mathfrak{A}_{G'}}$

$$(\exists X_{0}, \ldots, X_{m}) [\bigwedge_{i \neq j} (\neg \exists y)[y \in X_{i} \land y \in X_{j}] \land$$

$$(\forall x)[(\neg \exists y)[x \lhd y] \rightarrow x \in X_{0}] \land \qquad \text{% Initial State}$$

$$\bigwedge_{1 \leq n \leq m} (\forall x_{1}, \ldots, x_{n}, y)[\bigvee_{\substack{(i_{1}, \ldots, i_{n}, \sigma, j) \in \alpha \\ 1 \leq k \leq n}} x_{k} \in X_{i_{k}} \land y \lhd x_{k} \land y \in X_{j} \land y \in P_{\sigma}]$$

$$\bigvee (\exists x \forall y)[x \lhd^{*} y \land x \in X_{i}] \qquad \text{% Root}$$

 $i \in F$

Interpreting the Intended Structures

- The intended tree is contained in the lifted tree
- Homomorphism:

$$h(f') = f(x_1, \dots, x_n) ext{ for } f \in \Sigma_n$$
 $h(\pi_i^n) = x_i$ $h(c_{(n,k)}(t,t_1,\dots,t_n)) = h(t)[h(t_1),\dots,h(t_n)]$

Goal: Definition of a set of intended relations:

$$R^I = \{ \lhd^* \text{ (Dominance)}, \lhd, \lhd^+, \lhd \text{ (Precedence)}, \ldots \}$$

MSO definable transductions

$$\mathcal{R} \leadsto Q$$

$$(\varphi, \psi, (\theta_q)_{q \in Q})$$

 ϕ the domain of the transduction ψ the resulting domain of Q θ_q the new relations

1. Our trees feature three families of labels: the "linguistic" symbols $L = \mathcal{T}^L \cup \mathcal{N}^L$, where $\mathcal{T} = \Sigma_0$ of the underlying (M)CFTG and $\mathcal{N} = \bigcup_{n \geq 1} \Sigma_n$; the "composition" symbols $C = \bigcup_{n,k \geq 0} c_{n,k}$; and the "projection" symbols Π .

2. All non-terminal nodes in T^L are labeled by some $c \in \mathbb{C}$. No terminal node is labeled by some c.

3. The terminal nodes in T^L are either labeled by some "linguistic" symbol or by some "projection" symbol $\pi \in \Pi_i$.

4. Any "linguistic" node dominating anything in the intended tree is on some left branch in T^L , i.e., it is the left-most daughter of some $c \in C$.

5. For any node p labeled with some "projection" symbol $\pi \in \Pi_i$ in T^L there is a unique node n (labeled with some $c \in C$ by (2.)) which properly dominates p and whose i-th sister (to the right) will eventually evaluate to the value of π . Moreover, n will be the first node properly dominating p which is on a left branch.

The tree-walking automaton A_{\lhd}

The walking language W_{\lhd}

$$W_{\triangleleft} = \mathbf{L}(x) \cdot \uparrow_{1} \cdot (\downarrow_{2} \cup \downarrow_{3} \cup \downarrow_{4}) \cdot (\bigcup_{1 \leq i \leq k} W_{\Pi_{i}} \cup W_{\mathbf{C}})^{*} \cdot \mathbf{L}(x)$$

$$W_{\mathbf{C}} = \mathbf{C}(x) \cdot \downarrow_{1}$$

$$W_{\Pi_{i}} = \Pi_{i}(x) \cdot (\uparrow_{2} \cup \uparrow_{3} \cup \uparrow_{4})^{*} \cdot \uparrow_{1} \cdot \downarrow_{i+1}$$

 W_{\triangleleft} can be inductively translated into an MSO-formula $trans_{W_{\triangleleft}}(x,y)$.

Logical Reconstruction of Precedence: $x \triangleleft y$

Terminal Nodes: x and y are terminal nodes and for some internal node z dominating x and y and for the paths X and Y used by the TWA to connect z with x and y, respectively, the first leaf node on X precedes the first leaf node on Y.

Internal Nodes: *x* and *y* are internal nodes of the intended tree and every terminal node which *x* dominates precedes (in the lifted tree) every terminal node that *y* dominates.

The tree-walking automaton $A_{\ensuremath{\vartriangleleft}}$

Intended Structures via MSO transduction

$$(\varphi, \psi, (\theta_q)_{q \in Q})$$

$$Q = \{ \lhd, \lhd^*, \lhd^+, \lhd, \dots \}$$

$$\varphi = \varphi_{\mathfrak{A}_{\mathcal{G}'}}$$

$$\psi = \mathsf{L}(x)$$

$$\theta_{\lhd} = \mathsf{trans}_{W_{\lhd}}(x, y)$$

$$\theta_{\lhd^*} = (\forall X) [\lhd \text{-} \textit{closed}(X) \lor x \in X \ \to \ y \in X]$$

$$\theta_{\lhd^+} = x \lhd^* y \lor x \not\approx y$$

$$\theta_{\lhd} = (\exists u, v) [u \lhd^* x \land v \lhd^* y \land \mathsf{trans}_{W_{\lhd}}(u, v)]$$

$$\theta_{\mathsf{labels}} = \text{ as in the old structure } R$$

Conclusion

Linguistic Models/Theories

GB, Minimalism, TAG, HPSG

- Motivation and Theoretical Background
- TAGs
- (Monadic) Context-Free Tree Grammars
- From (M)CFTGs to Regular Tree Grammars
- Interpreting the Intended Structures

Outlook

Courcelle/Makowsky (Draft of July 2000)

Every MS definable transduction has a natural contravariant counterpart called their *backwards translation* mapping, an MS formula expressing a property of the object structure into an MS formula expressing the same property on the input structure.

. . .

In particular, MS decidability results and existence of linear algorithms are easily obtained once a class of structures is recognized to be the image by a transduction of a class of trees, ...

Appendix: Some more Details

Suppose that Σ is a ranked alphabet. The *derived* \mathbb{N} -sorted alphabet Σ^L is defined as follows:

For each $n \ge 0$,

$$\Sigma_n' = \{ f' | f \in \Sigma_n \}$$

is a new set of symbols of sort n;

Suppose that Σ is a ranked alphabet. The *derived* \mathbb{N} -sorted alphabet Σ^L is defined as follows:

for each $n \ge 1$ and each $i, 1 \le i \le n$,

$$\pi_i^n$$

is a new symbol, the ith projection symbol of sort n;

Suppose that Σ is a ranked alphabet. The *derived* \mathbb{N} -sorted alphabet Σ^L is defined as follows:

for each $n \ge 0, k \ge 0$ the new symbol

$$C_{(n,k)}$$

is the (n,k)th composition symbol.

Suppose that Σ is a ranked alphabet. The *derived* \mathbb{N} -sorted alphabet Σ^L is defined as follows:

$$egin{aligned} \Sigma_0^L &= \Sigma_0' \ \Sigma_n^L &= \Sigma_n' \cup \{\pi_i^n | 1 \leq i \leq n\} ext{ for } n \geq 1 \ \Sigma_{n,k}^L &= \{c_{(n,k)}\} ext{ for } n,k \geq 0 \ \Sigma_i^L &= ext{ otherwise } \end{aligned}$$

Model-Theoretic Interpretation

Basic Idea (Rabin 1965)

Obtaining a structure $\mathbb{B}=\langle B,Q\rangle$ from a structure $\mathbb{A}=\langle A,\mathcal{R}\rangle$ where \mathcal{R} and Q are families of relation symbols.

back to MSO transductions

Tree-Walking Automaton

A tree-walking automaton (with tests) (Bloem and Engelfriet 1997) over some ranked alphabet Σ is a finite automaton $\mathfrak{A}=(Q,\Delta,\delta,I,F)$ with states Q, directives Δ , transitions $\delta:Q\times\Delta\to Q$ and the initial and final states $I\subseteq Q$ and $F\subseteq Q$ which traverses a tree using three kinds of directives:

- \uparrow_i "move up to the mother of the current node (if it has one and it is its *i*-th daughter)",
- \downarrow_i "move to the *i*-th daughter of the current node (if it exists)",
- $\phi(x)$ "verify that ϕ holds at the current node".

Regular Tree-Node Relations

For any tree t, such a tree-walking automaton $\mathfrak A$ computes a node relation

$$R_t(\mathfrak{A}) = \{(x,y) \,|\, (x,q_i) \overset{*}{\Longrightarrow} (y,q_f) \text{ for }$$
 some $q_i \in I$ and some $q_f \in F\}$

where for all states $q_i, q_j \in Q$ and nodes x, y in t

$$(x,q_i) \Rightarrow (y,q_j) \text{ iff } \exists d \in \Delta : (q_i,d,q_j) \in \delta$$

and y is reachable from x in t via d.

If all the tests $\phi(x)$ of $\mathfrak A$ are MSO definable, $\mathfrak A$ specifies a *regular* tree-node relation, which is itself MSO definable.

Reflexive transitive closure in MSO

$$R\text{-closed}(X) \overset{def}{\Longleftrightarrow} (\forall x, y)[x \in X \land R(x, y) \to y \in X]$$

$$R^*(x, y) \overset{def}{\Longleftrightarrow} (\forall X)[R\text{-closed}(X) \land x \in X \to y \in X]$$

Walking language $\Rightarrow MSO$ -formula

$$\begin{aligned} \mathit{trans}(x,y) &= \bot \\ \mathit{trans}_{\downarrow i}(x,y) &= \mathit{edge}_{i}(x,y) \\ \mathit{trans}_{\uparrow i}(x,y) &= \mathit{edge}_{i}(y,x) \\ \mathit{trans}_{\Phi(x)}(x,y) &= \Phi(x) \land x = y \\ \mathit{trans}_{W_{1} \cup W_{2}}(x,y) &= \mathit{trans}_{W_{1}}(x,y) \lor \mathit{trans}_{W_{2}}(x,y) \\ \mathit{trans}_{W_{1} \cdot W_{2}}(x,y) &= \exists z \, (\mathit{trans}_{W_{1}}(x,z) \land \mathit{trans}_{W_{2}}(z,y)) \\ \mathit{trans}_{W^{*}}(x,y) &= \forall x \, (\forall v, w \, (v \in X \land \mathit{trans}_{W}(v,w) \rightarrow w \in X) \\ \land x \in X \rightarrow y \in X) \end{aligned}$$

