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I General Structure of the Approach
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Translating TAGs to Monadic CFTGs

Lifting of Monadic Context-Free Tree Languages

Logical Characterization of the lifted Monadic
CFTG-Languages

Retrieval of the Intended Structures via
MSO-Definable Transductions

trees as relational structures

trees as elements of a free algebra

trees as elements of a free clone (Lawvere theory) I



Tree Adjoining Grammars
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I Tree Adjoining Grammars

<VN7VT787 Ia'q>

W\ is a finite set of nonterminals
VT is a finite set of terminals
S e W is the start symbol
I is a finite set of initial trees

A is a finite set of auxiliary trees

Def’'n from Joshi and Schabes 1997 I
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Derivation Steps in TAGS

TAL

NIONIAN ] 1VLISHIAINN STdVY ddVHA39] !



I TAG for ab"c"d"

({S),1a,b,c,d}, S 1a}, {B})
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I An example derivation




Tree Grammars
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I Tree Grammars (CFTG & RTG)

A context-free tree grammar [ is a 5-tuple
(Z,F, S X, P), with

2., F  ranked alphabets of inoperatives and operatives;
Se F the starting symbol;

X a countable set of variables; and

P a set of productions.

—
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I Tree Grammars (CFTG & RTG)
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The p € P have the form

F(X1,-,Xn) — 1t

with F € F, X1,--- ,Xp € X, and t a term over

2UFU {Xl, s ,Xn}.

An application of a rule F(Xg,--- ,Xn) — t “rewrites” a subtree
rooted in F as the tree t with its respective variables substituted
by F’s daughters.

Tree grammars with Fp, = ,n=£ 0, are called regular.

—



I Derivation Steps in CFTGs

CF-T
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I Monadic CFTGs

A— a

A — B(C)
A(X) — a(By,...,Bi_1,%,,Bi11,...,Bn)
A(X) — B1(Ba(...Bn(X)...))
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I Fact

Theorem (Monnich 1997, Fujiyoshi & Kasai 2000)

TAGs are equivalent to monadic CFTGs.
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I Monadic CFTG G for a"b"c"d"

g — <{a7 b? C7d787a7§}7 {S7S7é'767(_:7a7§17_&}78,7 {X}7 P>

S — §(£) B - g
X — SiSX) o
Sx) — K S
§1(X) - St(évxvd) a — 5 qd
S(X) — S(b,x,T)
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An example derivation

S — Sg)
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I Regular Tree Grammars

= (%,Fo, S P) where

S = (Zys|lWe S*,seS)
Fo= (Fes|S€S)

S € Fg is the starting symbol
P is a set of productions

The p € P have the form

F—t

with F € Fg s, and t a term over T(ZU Fo). I
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Derivation Steps in RTGS

REG-T

NIONIAN ] 1VLISHIAINN STdVY ddVHA39] !



From (M)CFTGs to RTGs
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I Overview of the Two-Step Approach

Derivation Trees
(MSO, RTG, FSTA)

[ Mildly-Contextsensitive Structures ]

B
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I Overview of the Two-Step Approach

Derivation Trees
(MSO, RTG, FSTA)
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I Overview of the Two-Step Approach

Derivation Trees
(MSO, RTG, FSTA)

..' EBERHARD KARLS UNIVERSITAT TUBINGEN



I From (M)CFTGs to RTGs: Intuition

simple primitive-recursive function

control structure is made visible
all function symbols become constants
the resulting grammar is is reqular;

and therefore expressible by an MSO formula

© © o o o 0

and can be translated into an FSTA.
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I From (M)CFTGs to RTGs: Intuition
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© © o o o 0

simple primitive-recursive function

control structure is made visible

all function symbols become constants

the resulting grammar is is reqular;

and therefore expressible by an MSO formula

and can be translated into an FSTA.

f(a,b) ~ (f o (Ty,T)) o (a,b) ~ o a ‘b



I Lifting

For k>0, LIFTE : T(Z,Xg) — T(Zh,K) is defined as
follows:

2

LIFT (X)) = A

C(n’k)(f/,LIFTE(tl), . LIFTE (tn))

forf €2p,n>1
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Lifted Example Grammar G’
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I An example derivation of G’

}’0)\ €1 1)/\5

S —— C(l,O) (S, 8)
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I An example derivation of G’

}’0)\ C(l Y /\8

S— C(l,l) (51, C(1’1) <87 C(l,l) <827 T&)))
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€(1,0) _
S — — 51 C(1,1) — €(1,1)
S €
) - Sl/\
A
Sy w C(1,1)



I An example derivation of G’

}’0)\ €1 1)/\5

S — C(1,1)(élaC(1,1)(S>C(1,1)(§'2»7T%)))
S — cuy(§,m)
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S — — Sy C(1,1) — €(1,1)
S ¢
S €(1,1) S /\0(1,1)
AN
S m C(1,1) C(1,1)
A
S? W% SQ 7T%



I An example derivation of G’

}’0)\ €1 1)/\5
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An example derivation of G’ (cont’d)
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€(1,0)

C(l,l) /\8
C(3,1) /\C(l,l)
St%d C(l,l) /\C(l )

C(3,1) C(1,1) C(3,1) 1
S¢7a wm ~d o can) c1,1) S;”b @
SP wi c(3,1)/\7r%
S;”b 7 Nc



Coding RTGs in MSO Logic (Thomas 1997)
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» Define a tree automaton 2 ;' from the RTG G

o Code its behaviour in (I)g[g,

(X0, ..., Xm) [\ (—Iy)ly € Xi Ay € Xj] A

17#]
(VX)[(—3y)[x<1y] — X € Xo] A % Initial State
A (%, %Y X € X, AY<IXAY € XjAY € Pyl
1<n<m (i1,---in,0,])€a
1<k<n
\/ (3Ixvy)[x<*yAx € X] % Root

eF _I
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Interpreting the Intended Structures
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I Reconstructing the Intended Structures

® The intended tree is contained in the lifted tree

® Homomorphism:

h(C(n,k) (t7t17 s 7tn)) h(t) [h(tl)a AR h(tn>]
® Goal: Definition of a set of intended relations:
R = {<* (Dominance), <1, <1, <t (Precedence), ...}

——

[] MSO-Transduction

..’ EBERHARD KARLS UNIVERSITAT TUBINGEN



I MSO definable transductions
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R~ Q
(¢7 LlJa (eCI)CIEQ)

¢ the domain of the transduction

U the resulting domain of Q.

Oq the new relations

Def’'n from Courcelle 1997, Basic Id

ea (Rabin 1965)




I A few general facts

€(3,1) c(1,1) C(s,n/\ T
Sy %d C(1,1) /\0(1,1) St%c
Sy m 0(3,1)/\ ]
Sy %C

1. Our trees feature three families of labels: the “linguistic”
symbols L = T-U AL, where T = 3 of the underlying

(M)CFTG and N\ = Un>12n; the “composition” symbols
C = Unk>0Cnk; and the “projection” symbols I1. I
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I A few general facts

C(3,1) c(1,1) C(s,n/\ m
Sy %d C(1,1) /\0(1,1) S’t%c
S mi C(3,1)/\ m
St 4%0

2. All non-terminal nodes in TL are labeled by some ce C. No

——

terminal node is labeled by some C.
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A few general facts
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C(3,1) c(1,1) C(s,n/\ m
Sy %d C(1,1) /\0(1,1) S’t%c
S mi C(3,1)/\ m
St 4%0

3. The terminal nodes in TL are either labeled by some
“linguistic” symbol or by some “projection” symbol Tt € [1;.



I A few general facts

€(3,1) €(1,1) C<3,1>/\7T%
Sy %d C(1,1) /\0(1,1) St%c
Sy m 0(3,1)/\ ]
St %C

4. Any “linguistic” node dominating anything in the intended
tree Is on some left branch in T'-, l.e., it is the left-most

daughter of some c € C. I

H EBERHARD KARLS UNIVERSITAT TUBINGEN



I A few general facts
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5. For any node p labeled with some “projection” symbol 1T € [1; in
TL there is a unique node n (labeled with some ¢ € C by (2.))
which properly dominates p and whose i-th sister (to the right) will

eventually evaluate to the value of Tt Moreover, n will be the first
node properly dominating p which is on a left branch.



I Reconstructing the Intended Structures

S a T[% d C(l’]_) K S°b T[% C
M cgy T4
S°b ™ c
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I Reconstructing the Intended Structures
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I Reconstructing the Intended Structures
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I Reconstructing the Intended Structures
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Reconstructing the Intended Structures

C(1,1)

C(1,1)
AN
C(3,1)

C11)
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Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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I The tree-walking automaton A
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I The walking language W_

Wo=L(X)-T1-(l2Ul3U ]a)-( | WhUWe)*-L(X)

1<i<k

We = C(x) - |1
Wh, =TTi(X) - (T2UT3UT4a)" - T1- lita

W, can be inductively translated into an M SO-formula

transw._, (X, Y).
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I Logical Reconstruction of Precedence: x<y
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Terminal Nodes: X and y are terminal nodes and for
some Iinternal node z dominating X and y and for
the paths X and Y used by the TWA to connect z
with X and Y, respectively, the first leaf node on X
precedes the first leaf node on Y.

Internal Nodes. X and y are internal nodes of the
iIntended tree and every terminal node which X
dominates precedes (in the lifted tree) every

terminal node that y dominates.



I The tree-walking automaton A,
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I Intended Structures via MSO transduction

((I)a LlJv (eCI)CIEQ)

Q={g,<", <", «...}

0=,
P =L(x)
04 = transw_ (X, Y)
0+ = (VX)[<-closed (X) Vxe X — y€e X]
O+ =X<TYyVXEY
O, = (3u,V)[u<* XAVF Yy Atranswy, (U, V)]

Blabels = as in the old structure R I
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Conclusion

Derivation Trees

(MSO, RTG, FSTA)

defAMSO) (simple)
ATT
TWA (simple)
MTT

Mildly Context—Sensitive Structures

Linguistic Models/Theories

GB, Minimalism, TAG, HPSG
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I Outlook
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Courcelle/Makowsky (Draft of July 2000)

Every MS definable transduction has a natural
contravariant counterpart called their backwards
translation mapping, an MS formula expressing a
property of the object structure into an MS formula
expressing the same property on the input structure.

In particular, MS decidability results and existence of
linear algorithms are easily obtained once a class of

structures is recognized to be the image by a
transduction of a class of trees, ... I



Appendix: Some more Detalls
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I Lifting
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Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

For each n > 0,
Zg:{f’]f € 2n}

IS a new set of symbols of sort n;

back to Lifting



I Lifting

Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

foreachn>landeachl,1<I| <n,
o

iS a new symbol, the 1th projection symbol of sort n;

—

back to Lifting
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I Lifting
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Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

for each n > 0,k > 0 the new symbol

C(n)k)

is the (N, k)th composition symbol.

back to Lifting



I Lifting
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Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

6 =20
sb=Y u{m1<i<nlforn>1
Zh,k = {C(n,k)} for n, k>0

Zi" = otherwise

hac




I Model-Theoretic Interpretation

Basic Idea (Rabin 1965)

Obtaining a structure B = (B, Q) from a structure
A = (A R) where R and Q are families of relation
symbols.

back to MSO transductions

—
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I Tree-Walking Automaton
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A tree-walking automaton (with tests) (Bloem and
Engelfriet 1997) over some ranked alphabet 2 is a
finite automaton A = (Q, A, d,1,F) with states Q,
directives A, transitions 0 : Q x A — Q and the initial
and final states | € Q and F C Q which traverses a

tree using three kinds of directives:
Ti “move up to the mother of the current node (if it

has one and it is its I-th daughter)”,

li “move to the I-th daughter of the current node (if
It exists)”,

@(X) “verify that @ holds at the current node”. I



I Regular Tree-Node Relations

For any tree t, such a tree-walking automaton 2( computes a
node relation

R(2) = {(xy)| (x.6i) = (y.qr) for
some g €| and some s € F}

where for all states @, q; € Q and nodes X,y in t

(%,0i) = (¥, qj) iff 3d € A: (q;,d,qj) €6

and Y is reachable from Xin t via d.

If all the tests @(X) of A are MSO definable, 2 specifies a regular
tree-node relation, which is itself MSO definable. I

! back to A,
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I Reflexive transitive closure in MSO

R-closed (X) LN (WX, y)[xe XAR(X,Y) — Yy €& X]

R*(X,Y) & (VX)|R-closed (X) AXe X — yeX]

——
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I Walking language = MSO-formula

XY)
(X,y)=e

y transy, (X,y) = edge; (Y, X)

é transgy) (X, Y) = @(X) AX=Y

zltransw,uw, (X, Y) = transw, (X,Y) V transw, (X, Y)

é transw, w, (X, Y) = JFz(transwy, (X, 2) Atransw, (Z,Y))

é transyy+ (X, y) = transy (X, Y)

% transyy (X,Y) = VX (Vv,w(v € X Atransy (V,W) — W & X)

% AXEX — yeX)

IJJ2back to W_, _I
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