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I Semistructured Data in Linguistics
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I Semistructured Data in Linguistics
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I Semistructured Data in Linguistics

H EBERHARD KARLS UNIVERSITAT TUBINGEN

"word

PHON

SYNSEM

nelist
FIRST she
| REST dlist

Ssynsem

LOCAL

"ocal

CATEGORY

CONTENT

CONTEXT

cat
noun
HEAD { CASE nom

| SUBCAT dist

ppro
Tef
GEND fem
NUM sing
| PERS 3rd
| RESTR eset
{context }

INDEX

|




I Semistructured Data in Linguistics

Penn Treebank II:
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I Semistructured Data in Linguistics
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TGrep:

S<1 /'NP/ < (VP < (NP $.. NP))

Get all S that start with an NP (not necessarily the
subject) and that dominate a VP that in turn has two NP
children — in other words, sentences with what might be

double-object V Ps.
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Overview

Derivation Trees

(MSO, RTG, FSTA)

def{MSO) (simple)
ATT
TWA (simple)
MTT

Mildly Context—Sensitive Structures

Linguistic Models/Theories

GB, Minimalism, TAG, HPSG




I General Structure of the Approach
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Translating TAGs to Monadic CFTGs

= Lifting of Monadic Context-Free Tree Languages

—> Logical Characterization of the lifted Monadic
CFTG-Languages

— Retrieval of the Intended Structures via
MSO-Definable Transductions
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I General Structure of the Approach
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R

Translating TAGs to Monadic CFTGs

Lifting of Monadic Context-Free Tree Languages

Logical Characterization of the lifted Monadic
CFTG-Languages

Retrieval of the Intended Structures via
MSO-Definable Transductions

trees as relational structures

trees as elements of a free algebra

trees as elements of a free clone (Lawvere theory) I



Derivation Steps in TAGS

TAL
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I Tree Grammars (CFTG & RTG)

A context-free tree grammar [ is a 5-tuple
(Z,F, S X, P), with

2, F ranked alphabets of inoperatives and operatives:;
Se F the starting symbol;

X a countable set of variables; and

P a set of productions.

—
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I Tree Grammars (CFTG & RTG)
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The p € P have the form

F (X1, ,Xn) —t

with F € F, X1,--- ,Xp € X, and t a term over

2 U FU{Xl, .o ,Xn}.

An application of a rule F (X1, -+ ,Xn) — t “rewrites” a subtree
rooted in F as the tree t with its respective variables substituted
by F’s daughters.

Tree grammars with Fn, = 0,n £ 0, are called regular.

—



I Derivation Steps in CFTGs

CF-T

H EBERHARD KARLS UNIVERSITAT TUBINGEN




I Monadic CFTGs

A— a

A — B(C)
A(X) — a(Bs,...,Bi_1,X,,Bi11,...,Bn)
A(X) — B1(Ba(...Bn(X)...))
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I Fact

Theorem (Monnich 1997, Fujiyoshi & Kasai 2000)

TAGs are equivalent to monadic CFTGs.
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I Monadic CFTG G for a"b"c"d"

g — <{a‘7 b? C,d78737§}7 {S7S7a767c7a7§].7§2}78,7 {X}7 P>

S — §(E) B - a
Sx) — SSEM) 2
% — P P F

9 — s@xd £

X) — §(b,Xx,T)
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An example derivation

S — Sg)
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I Regular Tree Grammars

= (%,Fo, S P) where

> = (Tys|we S ses)
Fo= <F873’ S¢c 5>

S € Fpis the starting symbol
P is a set of productions

The p € P have the form

F—t

with F € Fg s, and t a term over T(ZU Fp). I
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Derivation Steps in RTGS

REG-T
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I From (M)CFTGs to RTGs: Intuition

f(a,b) ~ (fo(m,™@))0(a,b)~ OAQ\
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I Lifting

For k>0, LIFTE © T(Z,Xk) — T(Z4,K) is defined as
follows:

LlFTE(Xi) = T[f<

C<n,k)(f’,L|FTE(t1), -, LIFTE(tn))

forf €2p,n>1
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The Lifted Example Grammar G’
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I An example derivation of G’

}’0)\ €1 1)/\5

S — S¢)
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€(1,0)



I An example derivation of G’

}’0)\ €1 1)/\5
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I An example derivation of G’

}’0)\ €1 1)/\5
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I An example derivation of G’

}’0)\ C(l Y /\8
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[ — S C(1,1) = C(1,1)
S
8 ST Ca Si /\C(l,n
S A 1
T c C(1,
2 1 (1,1) _ (/1\1)
Sy w Sy wf
Si(x) — S(ax,d)
S(X) — S(b,x,0)



An example derivation of G’ (cont’d)
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€(1,0)

C(l,l) /\8
C(3,1) /\C(l,l)
St%d C(l,l) /\C(l )

C(3,1) C(1,1) C(3,1) 1
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Coding RTGs in MSO Logic (Thomas 1997)
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» Define a tree automaton 2 ;' from the RTG G’

o Code its behaviour in (I)g[g,

(3Xo,- .., Xm) [\ (=) [y € Xi Ay € Xj] A

17 ]
(VX)[(—3y) [x<1y] — X € Xo] A % Initial State
A (WX, %YV X € X, AY<IXAY € XjAY € Pyl
1<n<m (i1,...,in,0,])€a
1<k<n
\/ (3xvy)[x<*yAx € X] % Root

eF _I



I Goal
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Define a set of relations
R = {«*, «, <", <, c-command,...}

holding between the nodes n € N\ of the explicit tree T~ which
carry a “linguistic” label | € T-U A (C Up=Zn) in such a way,
that when interpreting

* ¢ R as a tree order on the set of “linguistic” nodes and
< €R asthe precedence relation on the resulting structure,

{nineN-An) e TEuaty, < <) I
is in fact the intended tree corresponding to T".



I MSO definable transductions
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R~ Q
(¢7 L|J7 (GQ)QEQ)

¢ the domain of the transduction

U the resulting domain of Q

Oy the new relations

Def’'n from Courcelle 1997,

Basic Id

ea

(Rabin 1965)



I Reconstructing the Intended Structures
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Homomorphism:



I A few general facts

C(3,1) C(1,1) C(3,1)/\ W%
Sy Ad (1, 1)/\0(1 1) St%c
S i C(3, 1)/\

1. Our trees feature three families of labels: the “linguistic”
symbols L = T U AL, where 7 = 3 of the underlying

(M)CFTG and A = Un>12n; the “composition” symbols
C = Unk>0Cnk; and the “projection” symbols I1. I
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I A few general facts

2. All non-terminal nodes in TL are labeled by some c <€ C. No

—

terminal node is labeled by some C.
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A few general facts
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C(3,1) C(1,1) C(3,1) W%
St %d C(1,1) /\6(171) St%c
Sy i C(3 1)/\7&

3. The terminal nodes in Tt are either labeled by some
“linguistic” symbol or by some “projection” symbol 1T € I1j.



I A few general facts

C(3,1) C(1,1) C(3,1)/\ W%
Sy Ad (1, 1)/\0(1 1) St%c
S i C(3, 1)/\

4. Any “linguistic’ node dominating anything in the intended
tree Is on some left branch in T'-, l.e., it is the left-most

daughter of some c € C. I
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I A few general facts
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5. For any node p labeled with some “projection” symbol 1T [1; in
TL there is a unique node n (labeled with some ¢ € C by (2.))
which properly dominates p and whose i-th sister (to the right) will

eventually evaluate to the value of TL Moreover, n will be the first
node properly dominating p which is on a left branch.



I Reconstructing the Intended Structures

€31 (L) €31 i
S % d c(/l\l) C(1,1) S 4% C
S 0(371)/\ i
S“b ™ c
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I Reconstructing the Intended Structures
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I Reconstructing the Intended Structures
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I Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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Reconstructing the Intended Structures
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I The tree-walking automaton
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I The walking language W
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We=L(X) T1-(J2Ul3U [a)-

We = C(X) - |1

() Wh, UWe)* - L (x)

1<i<k

Wh, =T1i(X) - (T2U 13U Ta)" - T1- li+1

W, can be inductively translated

transy, (X, Y).

into an M SO-formula

——



I _ogical Reconstruction of Precedence: x<y
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Terminal Nodes. x and y are terminal nodes and for
some internal node z dominating X and y and for
the paths X and Y used by the TWA to connect z
with X and Yy, respectively, the first leaf node on X
precedes the first leaf node on Y.

Internal Nodes. X and y are internal nodes of the
Intended tree and every terminal node which X
dominates precedes (in the lifted tree) every

terminal node that y dominates.



I The tree-walking automaton A,
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I Intended Structures via MSO transduction

¢ = Oa,
b =L(x)
0. = transw_ (X,Y)
0. = (VX)|[«-closed (X)Vxe X — ye X]
O+ =Xa"YyVXzy

O = (Ju,V)[u<«*XAVa"yAtransy, (U,V)]

Bapels = as in the old structure R I
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Conclusion

Derivation Trees

(MSO, RTG, FSTA)

def{MSO) (simple)
ATT
TWA (simple)
MTT

Mildly Context—Sensitive Structures

Linguistic Models/Theories

GB, Minimalism, TAG, HPSG




I Outlook
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Courcelle/Makowsky (Draft of July 2000)

Every MS definable transduction has a natural
contravariant counterpart called their backwards
translation mapping, an MS formula expressing a
property of the object structure into an MS formula
expressing the same property on the input structure.

In particular, MS decidabllity results and existence of
linear algorithms are easily obtained once a class of

structures is recognized to be the image by a
transduction of a class of trees, ... I



I Tree Adjoining Grammars

<VN7VT787 I)"’?l>

VWV is a finite set of nonterminals
VT is a finite set of terminals
Se V) is the start symbol
I is a finite set of initial trees

A is a finite set of auxiliary trees

Def’'n from Joshi and Schabes 1997 _I
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I TAG for ab"c"d"

({S},1a,b,c,d}, S {a},{B})
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I An example derivation

!
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I Lifting
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Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

For each n > 0,

IS a new set of symbols of sort n;

pack to Lifting




I Lifting

H EBERHARD KARLS UNIVERSITAT TUBINGEN

Suppose that 2 is a ranked alphabet. The derived

N-sorted alphabet =" is defined as follows:

foreachn>1andeachl,1 <i| <n,

v

is a new symbol, the 1th projection symbol of sort n;

pac

K

to Lifting

—



I Lifting
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Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

for each n > 0,k > 0 the new symbol

C(nk)

is the (N, k)th composition symbol.

back to Lifting



I Lifting
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Suppose that 2 is a ranked alphabet. The derived
N-sorted alphabet =" is defined as follows:

6= 20
sSb=Y u{m1<i<n}lforn>1
th = {C(n,k)} for n, k>0

>k = 0 otherwise

pack to Lifting _I




I Model-Theoretic Interpretation

Basic Idea (Rabin 1965)

Obtaining a structure B = (B, Q) from a structure
A = (A R) where R and Q are families of relation
symbols.

back to MSO transductions

——
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I Tree-Walking Automaton
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A tree-walking automaton

(with tests) (Bloem and

Engelfriet 1997) over some ranked alphabet 2 is a
finite automaton 2 = (Q, A, d,1,F) with states Q,
directives A, transitions 0 : Q x A — Q and the initial

and final states | C Q ano
tree using three kinds of c

F C Q which traverses a
Irectives:

Ti “move up to the mot

has one and it is its I-

ner of the current node (if it
th daughter)”,

li “move to the I-th daughter of the current node (if

It exists)”,

d(Xx) “verify that ¢ holds at the current node”. I



I Regular Tree-Node Relations
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For any tree t, such a tree-walking automaton 2l computes a
node relation

R(@) = {(xy)| (x.a) = (y.qr) for
some g € | and some g; € F}

where for all states @, q; € Q and nodes X,y in t

(X,0i) = (y,q;) iff 3d € A: (g, d,qj) €0

and Y is reachable from Xin t via d.

If all the tests ¢ (X) of A are MSO definable, 2l specifies a regular
tree-node relation, which is itself MSO definable. I

back to A




I Reflexive transitive closure in MSO

R-closed (X) &l (WX, y)[xe XAR(X,Y) — Yy €& X]

R*(X,y) =% (vX)[R-closed (X) Ax € X — ye X]

——
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I Walking language = M30O-formula

= VX (W, w(ve X Atransy(V,w) — we X)

AXEX — yeX) I
back to W
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