Semistructured Data and Linguistics

Uwe Mönnich and Frank Morawietz
\{um,frank\}@sfs.uni-tuebingen.de http://tcl.sfs.uni-tuebingen.de/
Seminar für Sprachwissenschaft
Arbeitsbereich Theoretische Computerlinguistik
Universität Tübingen

Outline

- Motivation and Theoretical Background
- TAGs
- (Monadic) Context-Free Tree Grammars
- From (M)CFTGs to Regular Tree Grammars
- Interpreting the Intended Structures

Semistructured Data in Linguistics

Who did Lena invite to her birthday party?

Semistructured Data in Linguistics

Semistructured Data in Linguistics

Semistructured Data in Linguistics

Penn Treebank II:

(TOP (S (NP-SBJ my best friend)

($V P$ gave
($N P$ me)
(NP chocolate)
(NP-TMP yesterday))
.))

Semistructured Data in Linguistics

TGrep:

$$
S<1 /{ }^{\wedge} N P /<(V P<(N P \$. . N P))
$$

Get all S s that start with an $N P$ (not necessarily the subject) and that dominate a $V P$ that in turn has two $N P$ children - in other words, sentences with what might be double-object $V P$ s.

General Structure of the Approach

Translating TAGs to Monadic CFTGs
\Rightarrow Lifting of Monadic Context-Free Tree Languages
\Rightarrow Logical Characterization of the lifted Monadic CFTG-Languages
\Rightarrow Retrieval of the Intended Structures via MSO-Definable Transductions

General Structure of the Approach

Translating TAGs to Monadic CFTGs
\Rightarrow Lifting of Monadic Context-Free Tree Languages
\Rightarrow Logical Characterization of the lifted Monadic CFTG-Languages
\Rightarrow Retrieval of the Intended Structures via MSO-Definable Transductions

- trees as relational structures

General Structure of the Approach

Translating TAGs to Monadic CFTGs
\Rightarrow Lifting of Monadic Context-Free Tree Languages
\Rightarrow Logical Characterization of the lifted Monadic CFTG-Languages
\Rightarrow Retrieval of the Intended Structures via MSO-Definable Transductions

- trees as relational structures
- trees as elements of a free algebra

General Structure of the Approach

Translating TAGs to Monadic CFTGs
\Rightarrow Lifting of Monadic Context-Free Tree Languages
\Rightarrow Logical Characterization of the lifted Monadic CFTG-Languages
\Rightarrow Retrieval of the Intended Structures via MSO-Definable Transductions

- trees as relational structures
- trees as elements of a free algebra
- trees as elements of a free clone (Lawvere theory)

Derivation Steps in TAGs

Tree Grammars (CFTG \& RTG)

A context-free tree grammar Γ is a 5 -tuple $\langle\Sigma, \mathbf{F}, S, \mathbf{X}, \mathbf{P}\rangle$, with
$\Sigma, \mathbf{F} \quad$ ranked alphabets of inoperatives and operatives;
$S \in \mathbf{F}$ the starting symbol;
$\mathbf{X} \quad$ a countable set of variables; and
P a set of productions.

Tree Grammars (CFTG \& RTG)

The $p \in \mathbf{P}$ have the form

$$
F\left(x_{1}, \cdots, x_{n}\right) \longrightarrow t
$$

with $F \in \mathbf{F}, x_{1}, \cdots, x_{n} \in \mathbf{X}$, and t a term over $\Sigma \cup \mathbf{F} \cup\left\{x_{1}, \cdots, x_{n}\right\}$.
An application of a rule $F\left(x_{1}, \cdots, x_{n}\right) \longrightarrow t$ "rewrites" a subtree rooted in F as the tree t with its respective variables substituted by F 's daughters.
Tree grammars with $\mathbf{F}_{n}=\emptyset, n \neq 0$, are called regular.

Derivation Steps in CFTGs

Monadic CFTGs

$$
\begin{aligned}
A & \longrightarrow a \\
A & \longrightarrow B(C) \\
A(x) & \longrightarrow a\left(B_{1}, \ldots, B_{i-1}, x_{i},, B_{i+1}, \ldots, B_{n}\right) \\
A(x) & \longrightarrow B_{1}\left(B_{2}\left(\ldots B_{n}(x) \ldots\right)\right)
\end{aligned}
$$

Theorem (Mönnich 1997, Fujiyoshi \& Kasai 2000)
TAGs are equivalent to monadic CFTGs.

Monadic CFTG \mathcal{G} for $a^{n} b^{n} c^{n} d^{n}$

$$
\mathcal{G}=\left\langle\left\{a, b, c, d, \varepsilon, S_{t}, S_{t}^{0}\right\},\left\{S, S^{\prime}, \bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{S}_{1}, \bar{S}_{2}\right\}, S^{\prime},\{x\}, \mathbf{P}\right\rangle
$$

$$
\begin{aligned}
S^{\prime} & \longrightarrow S(\varepsilon) \\
S(x) & \longrightarrow \bar{S}_{1}\left(S\left(\bar{S}_{2}(x)\right)\right) \\
S(x) & \longrightarrow S_{t}^{0}(x) \\
\bar{S}_{1}(x) & \longrightarrow S_{t}(\bar{a}, x, \bar{d}) \\
\bar{S}_{2}(x) & \longrightarrow S_{t}(\bar{b}, x, \bar{c})
\end{aligned}
$$

An example derivation

An example derivation

$S(x) \longrightarrow \bar{S}_{1}\left(S\left(\bar{S}_{2}(x)\right)\right)$

An example derivation

$S(x) \longrightarrow \bar{S}_{1}\left(S\left(\bar{S}_{2}(x)\right)\right)$

An example derivation

Regular Tree Grammars

$\Gamma=\left\langle\Sigma, \mathrm{F}_{0}, S, \mathrm{P}\right\rangle$ where

$$
\begin{aligned}
\Sigma & =\left\langle\Sigma_{w, s} \mid w \in \mathcal{S}^{*}, s \in \mathcal{S}\right\rangle \\
\mathrm{F}_{0} & =\left\langle\mathrm{F}_{\varepsilon, s} \mid s \in \mathcal{S}\right\rangle
\end{aligned}
$$

$S \in \mathrm{~F}_{0}$ is the starting symbol
P is a set of productions
The $p \in \mathrm{P}$ have the form

$$
F \longrightarrow t
$$

with $F \in \mathrm{~F}_{\varepsilon, s}$, and t a term over $T\left(\Sigma \cup \mathrm{~F}_{0}\right)$.

Derivation Steps in RTGs

From (M)CFTGs to RTGs: Intuition

$f(a, b) \rightsquigarrow\left(f \circ\left(\pi_{1}, \pi_{2}\right)\right) \circ(a, b) \rightsquigarrow$

Lifting

For $k \geq 0, \operatorname{LIFT}_{k}^{\sum}: T\left(\Sigma, \mathbf{X}_{k}\right) \rightarrow T\left(\Sigma^{L}, k\right)$ is defined as follows:

$$
\begin{aligned}
& \operatorname{LIFT}_{k}^{\Sigma}\left(x_{i}\right)=\pi_{i}^{k} \\
& \operatorname{LIFT}_{k}^{\Sigma}(f)=c_{(0, k)}\left(f^{\prime}\right) \text { for } f \in \Sigma_{0} \\
& \operatorname{LIFT}_{k}^{\Sigma}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)= \\
& c_{(n, k)}\left(f^{\prime}, \operatorname{LIFT}_{k}^{\Sigma}\left(t_{1}\right), \ldots, \operatorname{LIFT}_{k}^{\Sigma}\left(t_{n}\right)\right) \\
& \text { for } f \in \Sigma_{n}, n \geq 1
\end{aligned}
$$

The Lifted Example Grammar \mathcal{G}^{\prime}

$$
\begin{aligned}
& S^{\prime} \longrightarrow c_{(1,0)}(S, \varepsilon) \\
& S \longrightarrow c_{(1,1)}\left(\bar{S}_{1}, c_{(1,1)}\left(S, c_{(1,1)}\left(\bar{S}_{2}, \pi_{1}^{1}\right)\right)\right) \\
& S \longrightarrow c_{(1,1)}\left(S_{t}^{0}, \pi_{1}^{1}\right) \\
& \bar{S}_{1} \longrightarrow c_{(3,1)}\left(S_{t}, a, \pi_{1}^{1}, d\right) \\
& \bar{S}_{2} \longrightarrow c_{(3,1)}\left(S_{t}, b, \pi_{1}^{1}, c\right)
\end{aligned}
$$

An example derivation of \mathcal{G}^{\prime}

$S^{\prime} \longrightarrow S(\varepsilon)$

An example derivation of \mathcal{G}^{\prime}

$$
S(x) \longrightarrow \bar{S}_{1}\left(S\left(\bar{S}_{2}(x)\right)\right)
$$

An example derivation of \mathcal{G}^{\prime}

$$
S(x) \longrightarrow \bar{S}_{1}\left(S\left(\bar{S}_{2}(x)\right)\right)
$$

An example derivation of \mathcal{G}^{\prime}

$$
\begin{aligned}
& \bar{S}_{1}(x) \longrightarrow S_{t}(\bar{a}, x, \bar{d}) \\
& \bar{S}_{2}(x) \longrightarrow S_{t}(\bar{b}, x, \bar{c})
\end{aligned}
$$

An example derivation of \mathcal{G}^{\prime} (cont'd)

Coding RTGs in MSO Logic (Thomas 1997)

- Define a tree automaton $\mathfrak{A}_{\mathcal{G}^{\prime}}$ from the RTG \mathcal{G}^{\prime}
- Code its behaviour in $\varphi_{\mathfrak{A}_{G^{\prime}}}$

$$
\begin{aligned}
& \left(\exists X_{0}, \ldots, X_{m}\right)\left[\bigwedge_{i \neq j}(\neg \exists y)\left[y \in X_{i} \wedge y \in X_{j}\right] \wedge\right. \\
& \quad(\forall x)\left[(\neg \exists y)[x \triangleleft y] \rightarrow x \in X_{0}\right] \wedge \quad \quad \text { \% Initial State } \\
& \quad \bigwedge_{1 \leq n \leq m}\left(\forall x_{1}, \ldots, x_{n}, y\right)\left[\bigvee_{\substack{\left(i_{1}, \ldots, i_{n}, \sigma, j\right) \in \alpha \\
1 \leq k \leq n}} x_{k} \in X_{i_{k}} \wedge y \triangleleft x_{k} \wedge y \in X_{j} \wedge y \in P_{\sigma}\right] \\
& \quad \bigvee_{i \in F}(\exists x \forall y)\left[x \triangleleft^{*} y \wedge x \in X_{i}\right] \quad \text { \% Root }
\end{aligned}
$$

Goal

Define a set of relations

$$
R^{I}=\left\{\triangleleft^{\star}, \triangleleft, \triangleleft^{+}, \varangle, \text { c-command }, \ldots\right\}
$$

holding between the nodes $n \in N^{L}$ of the explicit tree T^{L} which carry a "linguistic" label $l \in \mathcal{T}^{L} \cup \mathcal{N}^{L}\left(\subseteq \bigcup_{n \geq 0} \Sigma_{n}\right)$ in such a way, that when interpreting
$\triangleleft^{\star} \in R^{I}$ as a tree order on the set of "inguistic" nodes and $\varangle \in R^{I}$ as the precedence relation on the resulting structure,

$$
\left.\left\langle\left\{n \mid n \in N^{L} \wedge n\right) \in \mathcal{T}^{L} \cup \mathcal{N}^{L}\right\}, \triangleleft^{\star}, \varangle\right\rangle
$$

is in fact the intended tree corresponding to T^{L}.

MSO definable transductions

$$
\begin{gathered}
\mathcal{R} \rightsquigarrow Q \\
\left(\varphi, \psi,\left(\theta_{q}\right)_{q \in Q}\right)
\end{gathered}
$$

φ the domain of the transduction ψ the resulting domain of Q θ_{q} the new relations

Reconstructing the Intended Structures

Homomorphism:

$$
\begin{aligned}
h\left(f^{\prime}\right) & =f\left(x_{1}, \ldots, x_{n}\right) \text { for } f \in \Sigma_{n} \\
h\left(\pi_{i}^{n}\right) & =x_{i} \\
h\left(c_{(n, k)}\left(t, t_{1}, \ldots, t_{n}\right)\right) & =h(t)\left[h\left(t_{1}\right), \ldots, h\left(t_{n}\right)\right]
\end{aligned}
$$

A few general facts

1. Our trees feature three families of labels: the "linguistic" symbols $L=\mathcal{T}^{L} \cup \mathcal{N}^{L}$, where $\mathcal{T}=\Sigma_{0}$ of the underlying (M)CFTG and $\mathcal{N}=\bigcup_{n \geq 1} \Sigma_{n}$; the "composition" symbols $\mathrm{C}=\bigcup_{n, k \geq 0} c_{n, k}$; and the "projection" symbols Π.

A few general facts

2. All non-terminal nodes in T^{L} are labeled by some $c \in \mathrm{C}$. No terminal node is labeled by some c.

A few general facts

3. The terminal nodes in T^{L} are either labeled by some "linguistic" symbol or by some "projection" symbol $\pi \in \Pi_{i}$.

A few general facts

4. Any "linguistic" node dominating anything in the intended tree is on some left branch in T^{L}, i.e., it is the left-most daughter of some $c \in \mathrm{C}$.

A few general facts

5. For any node p labeled with some "projection" symbol $\pi \in \Pi_{i}$ in T^{L} there is a unique node n (labeled with some $c \in \mathrm{C}$ by (2.)) which properly dominates p and whose i-th sister (to the right) will eventually evaluate to the value of π. Moreover, n will be the first node properly dominating p which is on a left branch.

Reconstructing the Intended Structures

The tree-walking automaton A

The walking language W_{\triangleleft}

$$
\begin{gathered}
W_{\triangleleft}=\mathbf{L}(x) \cdot \uparrow_{1} \cdot\left(\downarrow_{2} \cup \downarrow_{3} \cup \downarrow_{4}\right) \cdot\left(\bigcup_{1 \leq i \leq k} W_{\Pi_{i}} \cup W_{\mathbf{C}}\right)^{*} \cdot \mathbf{L}(x) \\
W_{\mathbf{C}}=\mathbf{C}(x) \cdot \downarrow_{1} \\
W_{\Pi_{i}}=\Pi_{i}(x) \cdot\left(\uparrow_{2} \cup \uparrow_{3} \cup \uparrow_{4}\right)^{*} \cdot \uparrow_{1} \cdot \downarrow_{i+1}
\end{gathered}
$$

W_{\triangleleft} can be inductively translated into an $M S O$-formula $\operatorname{trans}_{W_{\triangleleft}}(x, y)$.

Logical Reconstruction of Precedence: $x \varangle y$

Terminal Nodes: x and y are terminal nodes and for some internal node z dominating x and y and for the paths X and Y used by the TWA to connect z with x and y, respectively, the first leaf node on X precedes the first leaf node on Y.

Internal Nodes: x and y are internal nodes of the intended tree and every terminal node which x dominates precedes (in the lifted tree) every terminal node that y dominates.

The tree-walking automaton A_{\varangle}

Intended Structures via MSO transduction

$$
\begin{gathered}
\left(\varphi, \psi,\left(\theta_{q}\right)_{q \in Q}\right) \\
Q=\left\{\triangleleft, \triangleleft^{\star}, \triangleleft^{+}, \varangle, \ldots\right\} \\
\varphi=\varphi_{\mathfrak{A}_{G^{\prime}}} \\
\psi=\mathrm{L}(x) \\
\theta_{\triangleleft}=\operatorname{trans}_{W_{\triangleleft}}(x, y) \\
\theta_{\triangleleft^{\star}}=(\forall X)[\triangleleft-\operatorname{closed}(X) \vee x \in X \rightarrow y \in X] \\
\theta_{\triangleleft^{+}}=x \triangleleft^{\star} y \vee x \not \approx y \\
\theta_{\varangle}=(\exists u, v)\left[u \triangleleft^{\star} x \wedge v \triangleleft^{\star} y \wedge \operatorname{trans}_{W_{\varangle}}(u, v)\right]
\end{gathered}
$$

$\theta_{\text {labels }}=$ as in the old structure R

Conclusion

Outlook

Courcelle/Makowsky (Draft of July 2000)

> Every MS definable transduction has a natural contravariant counterpart called their backwards translation mapping, an MS formula expressing a property of the object structure into an MS formula expressing the same property on the input structure.

...
In particular, MS decidability results and existence of linear algorithms are easily obtained once a class of structures is recognized to be the image by a transduction of a class of trees, ...

Tree Adjoining Grammars

$$
\begin{gathered}
\left\langle V_{N}, V_{T}, S, I, \mathcal{A}\right\rangle \\
V_{N} \text { is a finite set of nonterminals } \\
V_{T} \text { is a finite set of terminals } \\
S \in V_{N} \text { is the start symbol } \\
I \text { is a finite set of initial trees } \\
\mathcal{A} \text { is a finite set of auxiliary trees }
\end{gathered}
$$

$\langle\{S\},\{a, b, c, d\}, S,\{\alpha\},\{\beta\}\rangle$

An example derivation

Lifting

Suppose that Σ is a ranked alphabet. The derived \mathbb{N}-sorted alphabet Σ^{L} is defined as follows:

For each $n \geq 0$,

$$
\Sigma_{n}^{\prime}=\left\{f^{\prime} \mid f \in \Sigma_{n}\right\}
$$

is a new set of symbols of sort n;
back to Lifting

Lifting

Suppose that Σ is a ranked alphabet. The derived \mathbb{N}-sorted alphabet Σ^{L} is defined as follows:

for each $n \geq 1$ and each $i, 1 \leq i \leq n$,

$$
\pi_{i}^{n}
$$

is a new symbol, the i th projection symbol of sort n;
back to Lifting

Lifting

Suppose that Σ is a ranked alphabet. The derived \mathbb{N}-sorted alphabet Σ^{L} is defined as follows:

for each $n \geq 0, k \geq 0$ the new symbol

$$
c_{(n, k)}
$$

is the (n, k) th composition symbol.
back to Lifting

Lifting

Suppose that Σ is a ranked alphabet. The derived \mathbb{N}-sorted alphabet Σ^{L} is defined as follows:

$$
\begin{aligned}
\Sigma_{0}^{L} & =\Sigma_{0}^{\prime} \\
\Sigma_{n}^{L} & =\Sigma_{n}^{\prime} \cup\left\{\pi_{i}^{n} \mid 1 \leq i \leq n\right\} \text { for } n \geq 1 \\
\Sigma_{n, k}^{L} & =\left\{c_{(n, k)}\right\} \text { for } n, k \geq 0 \\
\Sigma_{i}^{L} & =\emptyset \text { otherwise }
\end{aligned}
$$

Model-Theoretic Interpretation

Basic Idea (Rabin 1965)

Obtaining a structure $\mathbb{B}=\langle B, Q\rangle$ from a structure $\mathbb{A}=\langle A, \mathcal{R}\rangle$ where \mathcal{R} and Q are families of relation symbols.
back to MSO transductions

Tree-Walking Automaton

A tree-walking automaton (with tests) (Bloem and Engelfriet 1997) over some ranked alphabet Σ is a finite automaton $\mathfrak{A}=(Q, \Delta, \delta, I, F)$ with states Q, directives Δ, transitions $\delta: Q \times \Delta \rightarrow Q$ and the initial and final states $I \subseteq Q$ and $F \subseteq Q$ which traverses a tree using three kinds of directives:
\uparrow_{i} "move up to the mother of the current node (if it has one and it is its i-th daughter)",
\downarrow_{i} "move to the i-th daughter of the current node (if it exists)",
$\varphi(x)$ "verify that φ holds at the current node".

Regular Tree-Node Relations

For any tree t, such a tree-walking automaton \mathfrak{A} computes a node relation

$$
\begin{aligned}
R_{t}(\mathfrak{A})= & \left\{(x, y) \mid\left(x, q_{i}\right) \stackrel{*}{\Longrightarrow}\left(y, q_{f}\right)\right. \text { for } \\
& \text { some } \left.q_{i} \in I \text { and some } q_{f} \in F\right\}
\end{aligned}
$$

where for all states $q_{i}, q_{j} \in Q$ and nodes x, y in t

$$
\left(x, q_{i}\right) \Rightarrow\left(y, q_{j}\right) \text { iff } \exists d \in \Delta:\left(q_{i}, d, q_{j}\right) \in \delta
$$

and y is reachable from x in t via d.
If all the tests $\varphi(x)$ of \mathfrak{A} are $M S O$ definable, \mathfrak{A} specifies a regular tree-node relation, which is itself $M S O$ definable. back to A_{4}

Reflexive transitive closure in $M S O$

$$
\begin{aligned}
R-\operatorname{closed}(X) & \stackrel{\text { def }}{\Longrightarrow}(\forall x, y)[x \in X \wedge R(x, y) \rightarrow y \in X] \\
R^{*}(x, y) & \stackrel{\text { def }}{\Longrightarrow}(\forall X)[R-\operatorname{closed}(X) \wedge x \in X \rightarrow y \in X]
\end{aligned}
$$

Walking language $\Rightarrow M S O$-formula

$$
\begin{aligned}
\operatorname{trans}_{\emptyset}(x, y) & =\perp \\
\operatorname{trans}_{\downarrow i}(x, y) & =\text { edge }_{i}(x, y) \\
\operatorname{trans}_{\uparrow_{i}}(x, y) & =\operatorname{edge}_{i}(y, x) \\
\operatorname{trans}_{\varphi(x)}(x, y) & =\varphi(x) \wedge x=y \\
\operatorname{trans}_{W_{1} \cup W_{2}}(x, y) & =\operatorname{trans}_{W_{1}}(x, y) \vee \operatorname{trans}_{W_{2}}(x, y) \\
\operatorname{trans}_{W_{1} \cdot W_{2}}(x, y) & =\exists z\left(\operatorname{trans}_{W_{1}}(x, z) \wedge \operatorname{trans}_{W_{2}}(z, y)\right) \\
\operatorname{trans}_{W^{*}}(x, y) & =\operatorname{trans}_{W}^{*}(x, y) \\
\operatorname{trans}_{W}^{*}(x, y) & =\forall X\left(\forall v, w\left(v \in X \wedge \operatorname{trans}_{W}(v, w) \rightarrow w \in X\right)\right. \\
& \wedge x \in X \rightarrow y \in X)
\end{aligned}
$$

