
A Regular Query for Context-Sensitive Relations
�

Uwe Mönnich, Frank Morawietz, and Stephan Kepser

Seminar für Sprachwissenschaft, Universität Tübingen, Germany�
um,frank,kepser � @sfs.uni-tuebingen.de

Abstract

One of the fundamental problems when defining
a query language for databases consists in finding
a balance between the desiderata of a sufficiently
large expressive power on the one hand and an ad-
equate computability of queries on the other. This
problem occurs of course also with linguistic tree-
banks, the prototype of non-relational semistruc-
tured databases. There are many linguistic phe-
nomena which can be adequately annotated by us-
ing trees, and for which there exists a powerful yet
decidable query language, namely monadic second
order logic (MSO). But on the other hand there ex-
ist linguistic phenomena such as cross-serial depen-
dencies in Swiss German which cannot be described
with context-free means and for which therefore
MSO is not expressive enough as a query language.
Instead of going over to a more expressive query
language and losing decidability on the way we
propose to employ a two-level approach, which
has proven successful in handling mildly context-
sensitive phenomena before.

The two-level approach consists of a lifting step
in which the (grammar of) the treebank and the
MSO query is lifted to the free Lawvere-algebra
where a coding of mildly context-sensitive relations
within the realm of MSO logic is possible. This step
allows to filter out all undesirable query results and
retrieve only the relevant ones. In the second step,
the returned answer trees are retranslated into the
original trees of the treebank. By using techniques
from automata theory in both steps we can ensure
that the query language remains decidable.

1 Introduction

The present paper tries to exploit the recent con-
vergence of studies in the fields of database tech-

�
In: Steven Bird, Peter Buneman, Mark Liberman (eds):

IRCS Workshop Linguistic Databases 2001, pp. 187–195

nology and computational linguistics. Within the
field of database technology the challenges result-
ing from the new data model of so-called semistruc-
tured or self-describing data have led to a wide spec-
trum of research activities that are concerned with
the problems of data integration, Web technology,
and the design of new query languages. Within lin-
guistics where the semistructured data models have
a long tradition, the availability of powerful storage
media has brought the divergence of different tra-
ditions of descriptive schemes and annotation sys-
tems into sharp focus. Complicating the task of
integrating data types from diverse sources of lin-
guistic documentation is the fact that natural lan-
guages exhibit a property that makes it impossible
for them to be accommodated within the limits of
core XML, the standard format for data exchange
on the Web. As has been noticed since the begin-
ning of formal language theory certain grammatical
phenomena like morphological congruences (e.g.,
Bambara) and cross-serial dependencies between
case markings (Swiss German) are outside the realm
of context-free languages and need for their de-
scriptive analysis a (limited) amount of contex-
tual information. Due to this character of context-
sensitivity that comes with a range of grammati-
cal constructions, even monadic second-order logic
(MSO), considered as a powerful query language, is
too weak to capture these phenomena.

Taking our inspiration from universal algebra we
regard grammatical categories as basic constants of
a many-sorted algebra with a distinguished set of
composition and projection symbols. Through the
explicit introduction of these operation symbols it
becomes possible to turn the data models of con-
temporary syntactic theories into a kind of labeled
tree structures that can either be generated by regu-
lar tree grammars or are identifiable with collections
of finite trees specifiable by formulae of MSO logic.

In the particular case of the verbal complex of

1

Swiss German mentioned above it is easy to de-
scribe in MSO terms the two verbal and nominal
clusters, respectively. What is problematic from
the point of view of regularity is the set of fixed
syntactic and semantic relations between the ver-
bal elements and their case-marked arguments. In
other words, an MSO specification of these bipar-
tite structures would return – regarding the MSO
specification as a yes/no query – structures that do
not satisfy the particular set of cross-serial depen-
dencies characteristic of the instance of context-
sensitivity under discussion. Despite this lack of
expressive power of the chosen query language the
algebraic approach adumbrated above is remark-
ably effective in filtering out the syntactic “noise”
from the query result. Since the explicit algebraic
structures are elements of a regular family of trees
it is again easy to produce an MSO formula that
characterizes exactly these cross-serial dependen-
cies among the explicit structures that were out of
the reach of the query language, on the intended lin-
guistic level.

It takes then only linear time to project those ex-
plicit structures that comply with the set of syntactic
and semantic relations onto the data model where
the original query was formulated. It turns out
that this method of regularizing queries of context-
sensitive structures can be adopted to all grammat-
ical phenomena that fall within the reach of cur-
rent linguistic theories (Kolb et al., 2000a; Kolb et
al., 2000b; Michaelis et al., 2001; Morawietz and
Mönnich, 2001).

The idea of using composition and projection as
operations on trees is a special case of a general
approach developed by Mezei and Wright (1967)
in which regular tree languages denote subsets
of arbitrary algebras. Of particular relevance for
the present application to context-sensitive query
problems have been the contributions of Courcelle
(1990) to the interaction between graph operations
and MSO. Courcelle has devised a primitive set of
operations such that any finite graph can be consid-
ered as the value of a term that is constructed from
(symbols for) these primitive operations. These op-
erations exhibit a feature that relates the logical de-
scription of graph properties to its translation in
terms of the corresponding tree expressions in a
very strong sense: For every MSO formula ϕ ex-
pressing a graph property there is a ”lifted” MSO
formula ϕL over trees that is satisfied by exactly
those structures that denote the sets of graphs mod-

eled by the original formula.
Courcelle’s ideas have been adapted to the con-

text of semistructured data. Buneman, Fernandez,
and Suciu (Buneman et al., 2000) define within the
framework of their data model nine constructors that
constitute a directed extension of Courcelle’s pro-
posal.

Since our data model is firmly entrenched in
the linguistic tradition where trees with a limited
amount of cross-serial dependencies play a promi-
nent role, we are able to restrict our attention to
two constructors denoting the familiar operations of
composition and projection. This advantage which
is provided by the considerable reduction of the set
of primitive constructors does not lead directly to a
family of canonical expressions that suits our pur-
poses. As was noted above a query whose expres-
sive power does not go beyond MSO is too weak to
specify an answer set displaying the sort of depen-
dencies so characteristic of natural language struc-
ture. It is therefore necessary to translate the result
of the first step of the query into a family of trees
that can be checked by a suitable constraint formula
for the intended dependencies. We will show that
this translation of the first step is tightly controlled
by the constraint formula. Using the constraint for-
mula as a template for the translation process allows
us to avoid the problem of context-sensitive parsing
without being forced to consider the unbounded set
of ”lifted” expressions denoting the same tree.

2 Preliminaries

Recall that for a given set of sorts S , a many-sorted
alphabet Σ (over S) is an indexed family � Σw� s � w �
S ��� s � S � of disjoint sets. A symbol σ � Σw � s is an
operator of type � w � s � , arity w, sort s and rank �w � .
The elements of Σε � s are also called constants (of
sort s).

In case S is a singleton set � s 	 , i.e., in case Σ
is a single-sorted or ranked alphabet (over sort s),
we usually write Σn to denote the (unique) set of
operators of rank n ��
 .

In later sections of the paper we will mainly use
the single-sorted case of alphabets. We will indi-
cate the need for many-sorted alphabets where nec-
essary.

For such a ranked alphabet Σ, we denote by T � Σ
the set of trees over Σ. T � Σ is inductively de-
fined with base case Σ0 � T � Σ and recursive step
f � t1 ��������� tn �� T � Σ if f � Σn and ti � T � Σ for
i � 1 ��������� n.

2

We fix an indexed set X � � x1 � x2 ������� 	 of vari-
ables and denote by Xn the subset � x1 ��������� xn 	 . Vari-
ables are considered to be constants, i.e., opera-
tors of rank 0. For a ranked alphabet Σ the fam-
ily T � Σ � X is defined to be T � Σ � X � , where Σ � X
is the ranked alphabet with Σ � X 0 � Σ0

�
X and

Σ � X n � Σn for every n �� 0. A subset L of T � Σ
is called a tree language over Σ.

Having described the tree terms, it remains to
specify the central notion of an algebra and to give
a precise definition of the way in which the operator
symbols induce operations on an algebra.

Suppose that Σ is a ranked alphabet. A Σ-algebra�
is a pair

� � � A � � f � f � Σ where the set A is
the carrier of the algebra and for each operator
f � Σn � f � : An � A is an operation of arity n on
A.

Different algebras, defined over the same opera-
tor domain, are related to each other if there exists
a mapping between their carriers that is compatible
with the basic structural operations.

A Σ-homomorphism of Σ-algebras h :
��� �
	 is

a function h : A
� � B, such that h � f � � a1 ��������� an � �

f � � h � a1 ��������� h � an � for every operator f of rank n
and for every n-tuple � a1 ��������� an � An.

The set of trees T � Σ � X can be made into a
Σ-algebra � � Σ � X by defining the operations in
the following way. For every f in Σn, for ev-
ery � t1 ��������� tn in T � Σ � X n: f �� Σ � X � � t1 ��������� tn �
f � t1 ��������� tn .

Every variable-free tree t � T � Σ has a value in
every Σ-algebra

�
. It is the value at t of the unique

homomorphism h : � � Σ � � .
The existence of a unique homomorphism from

the Σ-algebra of trees into an arbitrary Σ-algebra
�

provides also the basis for the view that regards the
elements of T � Σ � Xn as derived operations. Each
tree t � T � Σ � Xn induces an n-ary function t � : An �
A.

The meaning of this function t � is defined in
the following way. For every � a1 ��������� an � An:
t � � a1 ��������� an � â � t , where â : � � Σ � Xn � � is the
unique homomorphism with â � xi � ai.

In the particular case where
�

is the Σ-algebra� � Σ � Xm of trees over Σ that contain at most vari-
ables from Xm � � x1 ��������� xm 	 at their leaves the
unique homomorphism extending the assignment of
a tree ti � T � Σ � Xm to the variable xi in Xn acts as
a substitution t �� Σ � Xm � � t1 ��������� tn � t � t1 ��������� tn � where
the right hand side indicates the result of substitut-
ing ti for xi in t.

3 Queries
The aim of the paper is to provide a way to query
mildly context-sensitive relations in a treebank. A
treebank in our sense is just a set of labeled trees.
We use monadic second order logic (MSO) as query
language. A query is therefore an MSO-sentence,
and the answer to a query is the set of all those
trees in the treebank for which this formula is true.
MSO is quite a powerful query language, indeed ev-
ery regular set of trees can be characterized by an
MSO-formula. On the other hand, MSO is known to
be decidable on trees (Thatcher and Wright, 1968).
This makes MSO an appealing query language. But
MSO is restricted to context-free phenomena. A
linguist, on the other hand, may be interested in
certain non-context-free relations. An example of
such a phenomenon are cross-serial dependencies in
Swiss-German. In the sentence fragment

(. . . wil) mer de maa em chind lönd hälffe schwüme

a block of accusative objects (de maa) is followed
by a block of dative objects (em chind). Then fol-
low the verbs taking complements in the accusative
(lönd) followed by the verbs taking complements in
the dative (hälffe schwüme). In our case there is only
a single accusative and dative object, but in prin-
ciple there could be several of them. Examples of
this type are discussed at length by Shieber (1985).
A language describing such phenomena is of the
form anbmcndm, which is known to be non-context-
free. If a linguist wishes to search a treebank for
these mildly context-sensitive relations, MSO is in-
sufficient as a query language. The straight-forward
solution of expanding the expressive power of the
query language will almost inevitably end in an un-
decidable language. Therefore we propose a so-
lution of a different kind, namely a two-level ap-
proach.

In this approach, MSO is still used as the query
language. Consequently a query, if posed correctly,
will not only return the desired trees exhibiting the
context-sensitive relation, but also certain others.
To filter out these undesired trees we use a gram-
mar. That is to say the linguist has to specify a
grammar that generates the trees he is interested in.
This requires the grammar formalism to be more ex-
pressive than context-free (string) grammars. The
largest class of grammars suitable for our approach
are context-free tree grammars.

Definition 1 [Context-Free Tree Grammar] Let S

3

be a singleton set of sorts. Then a context-free
tree grammar (CFTG) for S is a 5-tuple Γ �
� Σ ��� � S ��� ��� � , where Σ and � are ranked alpha-
bets of inoperatives and operatives over S , respec-
tively. S ��� is the start symbol, � is a count-
able set of variables, and � is a set of productions.
Each p ��� is of the form F � x1 �����	� � xn � � t for
some n �
 , where F ��� n, x1 �����	� � xn �
� , and
t � T � Σ � � ��� x1 ���	��� � xn 	 .

Intuitively, an application of a rule of the form
F � x1 ��������� xn � t “rewrites” a tree rooted in F as
the tree t with its respective variables substituted by
F’s daughters.

A CFTG Γ � � Σ ��� � S ��� ��� � with � n � /0 for n �� 0
is called a regular tree grammar (RTG). Since RTGs
always just substitute some tree for a leaf-node, it
is easy to see that they can only generate recog-
nizable sets of trees, a forteriori context-free string
languages (Mezei and Wright, 1967). If � n is non-
empty for some n �� 0 , that is, if we allow the opera-
tives to be parameterized by variables, however, the
situation changes. CFTGs in general are capable of
generating sets of structures, the yields of which be-
long to the subclass of context-sensitive languages
known as the indexed languages.

An example of such a grammar formalism used in
linguistics that can express certain mildly context-
sensitive relations is Tree Adjoining Grammar
(Joshi and Schabes, 1997; Vijay-Shanker and Weir,
1994). TAG is known to be weakly equivalent to
monadic context-free tree grammars, as was shown
independently by Mönnich (1997) and Fujiyoshi
and Kasai (2000). Another example are minimal-
ist grammars in the sense of Stabler (Stabler, 2001),
which are equivalent to certain types of context-free
tree grammars (Michaelis et al., 2001).

In order to be able later on to find the desired
context-sensitive relations, it is necessary that the
actual grammar given is such that it generates all
those trees which embody non-context-free rela-
tions. It need not be a grammar for a single query.
But it should usually not be a general grammar for
the whole treebank either, because it will be used as
a filter.

Let us illustrate the above by means of an exam-
ple. We simplify the language for Swiss-German by
setting n � m, which results in the context-sensitive
language anbncndn. A Tree Adjoining Grammar
generating this language is given below.

Example 2 Let GTAG � � � S 	 ��� a � b � c � d 	 � S ��� α 	 �
� β 	 � be a TAG. The only initial tree α and the only
auxiliary tree β are given as follows:

��
�
�

�

��

� ��
� �

��

A derivation yielding aabbccdd has only two steps,
both adjoin the auxiliary tree in the only possible
position, see Figure 1.

�
� �	�

��
� ��
� ���
�

�	�

��
� ���
� ��
� ���
� ���
�

Figure 1: An example derivation of the TAG GTAG
given in Example 2

The corresponding monadic context-free tree
grammar for the TAG grammar looks like this:

Example 3 Consider the CFTG ΓTAG � � � a � b � c � d �
ε � St � S0

t 	 ��� S � S � S1 � S2 � a � b � c � d 	 � S ��� x 	 ��� � result-
ing from a translation of the TAG GTAG with � given
as follows

S � � S � ε a
� � a

S � x � � S1 � S � S2 � x �� b
� � b

S � x � � S0
t � x c

� � c

S1 � x � � St � a � x � d d
� � d

S2 � x � � St � b � x � c
A derivation of the string aabbccdd is shown

in Figure 2. The example derivation is somewhat
longer than the one given for the almost identical
TAG grammar generating the same language. This
is due to the fact that we need nonterminals to intro-
duce each branching of the resulting tree separately.
In the first step, we simply rewrite the start sym-
bol. In the second one, the symbol S with the term
S1 � S � S2 � x �� where the (degenerate) tree ε is sim-
ply appended to the only argument position x of S2.
This step is repeated before we terminate with an

4

application of the rule rewriting S as S0
t . We sim-

plified the presentation in the sense that in this last
step we also applied the rules for the “barred” oper-
atives, i.e., we replaced each Si, i � � 1 � 2 	 with the
corresponding term and each s � � a � b � c � d 	 with s.

������� �
�
���

	��

�
	���
�

���

	�

	��

�
	���
	���
�

���

��
� � �
� ����

��
� � �
� ���

�

�
�

Figure 2: An example derivation of the CFTG ΓTAG

from Example 3

4 Lifting
The MSO-query on the treebank produced a set of
candidate trees out of which we would like to fil-
ter the desired trees by means of the grammar. In
principle, this could be done by starting a context-
sensitive parsing process on the set of candidate
trees. Rather than choosing this inefficient ap-
proach, we show in this section that the desired trees
can be filtered out by purely regular means. To do
so, we LIFT both the grammar and the set of can-
didate trees. The intuition here is that the basic as-
sumptions about the operations of a tree grammar,
namely tree substitution and argument insertion, are
made explicit. We make them visible by inserting
the “control” information which allows us to code
the resulting structures with regular means, i.e., reg-
ular tree grammars or finite-state tree automata and
therefore with MSO logic. The intuition behind
the LIFTing process is that each term compactly en-
codes information such as composition and concate-
nation.

In the following, we will briefly describe LIFTing
on a more formal level. All technical details, in
particular concerning many-sorted signatures, can
be found in a paper by Mönnich (1999). Any
context-free tree grammar Γ for a singleton set of
sorts S can be transformed into a regular tree gram-
mar ΓL for the set of sorts S � , which character-
izes a (necessarily recognizable) set of trees encod-
ing the instructions necessary to convert them by
means of a unique homomorphism h into the ones
the original grammar generates (Maibaum, 1974).
This “LIFTing” is achieved by constructing for a
given single-sorted signature Σ a new, derived al-

phabet (an S � -sorted signature) ΣL, and by trans-
lating the terms over the original signature into
terms of the derived one via a primitive recursive
procedure. The LIFT-operation takes a term in
T � Σ � � k and transforms it into one in T � ΣL � k . In-
tuitively, the LIFTing eliminates variables and com-
poses functions with their arguments explicitly, e.g.,
a term f � a � b � f � x1 � x2 �� � a � b is lifted to the
term c � c � f � π1 � π2 � a � b . The old function symbol f
now becomes a constant, the variables are replaced
with appropriate projection symbols and the only re-
maining non-nullary alphabet symbols are the ex-
plicit composition symbols c.

Definition 4 [LIFT] Let Σ be a ranked alphabet of
sort S and � k � � x1 ��������� xk 	 , k �
 , a finite set of
variables. The derived S � -sorted alphabet ΣL is de-
fined as follows: For each n

�
0, Σ ε � n � � f � f � Σn 	

is a new set of symbols of type � ε � n � ; for each n
�

1
and each i � 1 � i � n, πn

i is a new symbol, the ith pro-
jection symbol of type � ε � n � ; for each n � k �

0 the
new symbol c � n � k � is the � n � k th composition symbol
of type � nk1 �	��� kn � k � with k1 � �	��� � kn � k.

ΣL
ε � 0 � Σ ε � 0

ΣL
ε � n � Σ ε � n � � πn

i � 1 � i � n 	 for n
�

1

ΣL
nk1 � � � kn � k � � c � n � k � 	 for n � k �

0 and
ki � k for 1 � i � k

ΣL
w� s � /0 otherwise

For k
�

0, LIFTΣ
k : T � Σ ��� k � T � ΣL � k is defined

as follows:

LIFTΣ
k � xi � πk

i

LIFTΣ
k � f � c � 0 � k � � f for f � Σ0

LIFTΣ
k � f � t1 ��������� tn � �
c � n � k � � f � LIFTΣ

k � t1 ��������� LIFTΣ
k � tn �

for n
�

1 � f � Σn and t1 ��������� tn � T � Σ � Xk
Note that this very general procedure allows the

translation of any term over the original signature.
The left hand side as well as the right hand side
(RHS) of a rule of a CFTG Γ � � Σ ��� ��� � S ��� � is just
a term belonging to T � Σ � � ��� , but so is, e.g., any
structure generated by Γ.

Further remarks on the observation that the result
of LIFTing a CFTG is always an RTG can be also
found in the paper by Mönnich (1999). To further

5

illustrate the techniques, we present the continua-
tion of Example 3. Note that for better readability,
we omit all the 0- and 1-place composition symbols.

Example 5 Let ΓL
TAG � � � a � b � c � d � ε � St � S0

t 	 ��� S � S �
S1 � S2 � a � b � c � d 	 � S ��� � with � given as follows

S � � c � 1 � 0 � � S � ε
S
� � c � 1 � 1 � � S1 � c � 1 � 1 � � S � c � 1 � 1 � � S2 � π1

1 ��
S
� � c � 1 � 1 � � S0

t � π1
1

S1
� � c � 3 � 1 � � St � a � π1

1 � d
S2
� � c � 3 � 1 � � St � b � π1

1 � c

Note that we now have only nullary operatives
but extra composition and projection symbols.

For lifting the set of candidate trees, it is unfor-
tunately not possible to directly apply the lifting
definition above. Since the candidate trees have
no variables, their lifts would have no projection
symbols at all. For example, a candidate tree of
the form f � a � b would be lifted to c � f � a � b . On
the other hand, almost all trees generated by the
lifted grammar contain projection symbols. Conse-
quently the lifted grammar cannot generate a single
tree of the shape of the simple-minded lifted can-
didate trees and can therefore not be used to single
out the correct, lifted trees from the lifted candidate
trees. We therefore lift the candidate trees by gen-
erating for each tree a set of lifted trees with pro-
jection symbols. This set is finite and can be made
quite small for each tree on the basis of the follow-
ing assumptions. We assume the lifted grammar to
be in Greibach normal form. If it is not, we can
easily convert it thereinto. The fact that every rule
application of the lifted grammar in Greibach nor-
mal form produces an inoperative symbol together
with the fact that every symbol (terminal or inner)
of the candidate tree will be an inoperative symbol
after lifting gives a depth bound on the lifted tree.

An example of lifting a tree, namely the right-
most tree in Figure 2 can be found in Figure 3. The
additional arcs in this figure will be explained in the
next section.

The lifted grammar is now applied as the filter
on the set of lifted candidate trees. Practically this
can be done in the following way. Since the lifted
grammar is regular, it can be represented by a tree
automaton. This tree automaton representing the

grammar is run on the set of lifted candidate trees
accepting only those ones that are compatible with
the grammar. Now we have the lifted solution set
containing only the desired trees representing the
context-sensitive relations.

5 Reconstruction

Unfortunately the trees of the solution set are – since
lifted – not in the shape of trees in the treebank.
In fact, they do not seem to have much in common
with the structures linguists want to talk about, i.e.,
the ones in Figure 2. However, in some sense to be
made operational, the LIFTed structures contain the
intended structures. As mentioned before, there is a
mapping h from these explicit structures onto struc-
tures interpreting the compositions (the c’s) and the
projections (the π’s) the way the names we have
given them suggest, viz. as compositions and pro-
jections, respectively, which are, in fact, exactly the
intended structures.

On the denotational side, we can implement the
mapping h with an MSO definable tree transduc-
tion (as defined in Courcelle (1997)) and on the
operational side with both tree-walking automata
(FSTWA, see (Bloem and Engelfriet, 1997)) and
Macro Tree Transducer (MTT, see (Engelfriet and
Maneth, 1999)) to transform the LIFTed structures
into the intended ones. In this paper, we will focus
on the logical transduction.

Let us restate our goal then: Rogers (1998) has
shown the suitability of an MSO description lan-
guage L2

K � P for linguistics which is based upon the
primitive relations of immediate (�), proper (�

�
)

and reflexive (� �) dominance and proper prece-
dence (�). We will show how to define these re-
lations with an MSO transduction built upon finite-
state tree-walking automata thereby implementing
the unique homomorphism mapping the terms into
elements of the corresponding context-free tree lan-
guage, i.e., the trees linguists want to talk about.

Put differently, it should be possible to define
a set of relations RI � � � � �

� � � � (dominance),� (precedence) ������� 	 holding between the nodes of
the explicit or LIFTed tree which carry a “linguis-
tic” label � in such a way, that when interpreting

� � � RI as a tree order on the set of “linguistic”
nodes and � � RI as the precedence relation on the
resulting structure, we have a “new” description lan-
guage on the intended structures.

As mentioned before, we will use an MSO defin-
able tree transduction to transform the LIFTed struc-

6

������� ���

���	���
���

������
���
��� � � �� �

�����������

�������
���

������
���
��� � � �� �

���	���
���

���	���
���
� �� � ��

�������
���

� �����
���
� � � � �� �

� ��

���	���
���

����������
��� � � �� �

� ��

�

Figure 3: Intended relations on a LIFTed tree

tures into the intended ones. Let R be a finite set
of relation symbols with the corresponding arity for
each r � R given by ρ � r . A relational structure
R � � DR � � rR r � R � consists of the domain DR and

the ρ � r -ary relations rR � Dρ � r �
R . We can code trees

as relational structures by taking a tree domain as
the domain DRw� A of the structure and defining suc
as the corresponding tree order.

The classical technique of interpreting a rela-
tional structure within another one forms the basis
for MSO transductions. Intuitively, the output tree
is interpreted on the input tree. E.g., suppose that
we want to transduce the input tree t1 into the output
tree t2. The nodes of the output tree t2 will be a sub-
set of the nodes from t1 specified with a unary MSO
relation ranging over the nodes of t1. The daugh-
ter relation will be specified with a binary MSO re-
lation with free variables x and y ranging over the
nodes from t1.

Definition 6 [MSO transduction] Let R and Q be
two finite sets of ranked relation symbols. A (non-
copying) MSO transduction of a relational structure
R (with set of relation symbols R) into another one
Q (with set of relation symbols Q) is defined to be a
tuple � ϕ � ψ � � θq q � Q consisting of an MSO formula
ϕ defining the domain of the transduction in R , an
MSO formula ψ defining the resulting domain of Q ,
and a family of MSO formulas θq defining the new

relations Q using only definable formulas from the
“old” structure R , i.e., for α a variable assignment,

DQ � � d � DR � � R � d � � ψ �α � 	
and for each q � Q
qQ � � � d1 ��������� dn � Dn

Q � � R � d1 ��������� dn � � θq �α � 	
where n � ρ � q
Note that the transduction is only defined if ϕ holds.

The specific MSO transduction we need to trans-
form the LIFTed structures into the intended ones
simply looks as follows:

� ϕ � ψ � � θq q � Q
Q � � � � � � � �

� � � ��������	
ϕ � ϕA
ψ � � � x

θ � � x � y �� x � y
θ � � x � y �� ��! X � � -closed � X #"

x � X � y � X �
θ � $ � x � y �� x � � y % x �& y

θ ' � x � y �� x � y
θlabels � taken over from R

In the particular situation of an MSO query, the
domain of the transduction is given by the answer
set A , as described in Section 4. The set of nodes

7

of the intended tree is characterized by the formula
ψ which identifies the nodes via the “linguistic” la-
bels. Building on it, we define the other primitives
of our description language analogous to L2

K � P by
means of finite state tree walking automata. As
explained in full detail in the paper by Morawietz
and Mönnich (2001), the intended immediate dom-
inance relation � and the intended precedence rela-
tion � can be defined using a tree walking automa-
ton, which itself can be translated into an MSO for-
mula. Note that for a relation R, R-closed is the re-
flexive, transitive closure of R, which is known to be
(weakly) MSO-definable (Courcelle, 1990).

An example of a reconstruction is given in Fig-
ure 3. The gray arcs show how the intended tree can
be read of the LIFTed one.

6 Conclusion

In this paper, we presented an approach to query-
ing context-sensitive relations with purely regular
means. At the heart of this two-level approach lies
the insight that lifting a context-free tree grammar
results in a regular tree grammar, which, since it
is regular, can again be handled by monadic sec-
ond order logic and its associated automata theory.
The seeming contradiction of using regular means
to query mildly context-sensitive relations gets re-
solved by the old result (see, e.g., Courcelle (1990,
1997)) that the application of MSO-definable trans-
ductions on MSO-definable structures results in
structures that may no longer be MSO-expressible.

It should be noted that both LIFTing the grammar
and the reconstruction via MSO-transductions are
of linear complexity. Restricting the generation of
LIFTed candidate trees by means of the lifted gram-
mar is a topic of further research. We expect the
number of lifted trees for a given candidate tree to
be polynomially bound by the size of the candidate
tree. The problem of the complexity of translat-
ing an MSO-formula into a tree automaton is ad-
dressed by Neven and Schwentick (2000), who pro-
vide the definition of an MSO-fragment which has
the same expressive power as full MSO on trees, but
for which the translation into an automaton is only
exponential.

Due to space restrictions we were not able to de-
scribe all the methods presented here in full math-
ematical detail. The interested reader is asked to
consult the papers (Kolb et al., 2000a; Kolb et al.,
2000b; Michaelis et al., 2001) and in particular
(Morawietz and Mönnich, 2001).

References

Roderick Bloem and Joost Engelfriet. 1997. Char-
acterization of properties and relations defined
in Monadic Second Order logic on the nodes of
trees. Technical Report 97-03, Dept. of Com-
puter Science, Leiden University.

Peter Buneman, Mary Fernandez, and Dan Suciu.
2000. Unql: A query language and algebra for
semistructured data based on structural recursion.
VLDB Journal, 9(1):76–110.

Bruno Courcelle. 1990. Graph rewriting, an alge-
braic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Sci-
ence, volume B, pages 193–242. Elsevier.

Bruno Courcelle. 1997. The expression of graph
properties and graph transformations in monadic
second-order logic. In G. Rozenberg, editor,
Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. I: Foundations,
pages 313–400. World Scientific.

Joost Engelfriet and Sebastian Maneth. 1999.
Macro tree transducers, attribute grammars, and
MSO definable tree translations. Information and
Computation, 154:34–91.

Akio Fujiyoshi and Takumi Kasai. 2000. Spinal-
formed context-free tree grammars. MST: Math-
ematical Systems Theory, 33.

Aravind Joshi and Yves Schabes. 1997. Tree ad-
joining grammars. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages,
volume 3: Beyond Words of Handbook of Formal
Languages, pages 69–123. Springer, Berlin.

Hans-Peter Kolb, Jens Michaelis, Uwe Mönnich,
and Frank Morawietz. 2000a. An opera-
tional and denotational approach to non-context-
freeness. To appear in: Theoretical Computer
Science, Elesevier Science.

Hans-Peter Kolb, Uwe Mönnich, and Frank Moraw-
ietz. 2000b. Descriptions of cross-serial depen-
dencies. Grammars, 3(2/3):189–216.

Thomas Maibaum. 1974. A generalized approach
to formal languages. J. Comput. System Sci.,
88:409–439.

J. Mezei and Jesse Wright. 1967. Algebraic au-
tomata and contextfree sets. Information and
Control, 11:3–29.

Jens Michaelis, Uwe Mönnich, and Frank Morawi-
etz. 2001. On minimalist attribute grammars and
macro tree transducers. In (Rohrer et al., 2001).

Uwe Mönnich. 1997. Adjunction as substitution.

8

In G-J. M. Kruijff, G.V. Morill, and R.T. Oehrle,
editors, Formal Grammar ’97, pages 169–178.

Uwe Mönnich. 1999. On cloning contextfreeness.
In Hans-Peter Kolb and Uwe Mönnich, editors,
The Mathematics of Syntactic Structure, num-
ber 44 in Studies in Generative Grammar, pages
195–229. Mouton de Gruyter.

Frank Morawietz and Uwe Mönnich. 2001. A
model-theoretic description of tree adjoining
grammars. ENTCS, 53.

Frank Neven and Thomas Schwentick. 2000. Ex-
pressive and efficient pattern languages for tree-
structured data. In Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 145–156.
ACM.

James Rogers. 1998. A Descriptive Approach to
Language-Theoretic Complexity. CSLI Publica-
tions and FoLLI.

Chistian Rohrer, Antje Roßdeutscher, and Hans
Kamp, editors. 2001. Linguistic Form and its
Computation. University of Chicago Press.

Stuart Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and
Philosophy, 8:333–343.

Edward Stabler. 2001. Minimalist grammars and
recognition. In (Rohrer et al., 2001).

James Thatcher and Jesse Wright. 1968. General-
ized finite automata theory with an application to
a decision problem of second-order logic. Math-
ematical Systems Theory, 2(1):57–81.

Krishnamurti Vijay-Shanker and David Weir. 1994.
The equivalence of four extensions of context-
free grammars. Mathematical Systems Theory,
27(6):511–546.

9

