
Under consideration for publication in Theory and Practice of Logic Programming 1

Parsing Natural Languages with CHR

FRANK MORAWIETZ

Seminar für Sprachwissenschaft, Universität Tübingen

Wilhelmstr. 109

72074 Tübingen, Germany

(e-mail: frank@sfs.uni-tuebingen.de)

PHILIPPE BLACHE

LPL-CNRS, Université de Provence

29 Avenue Robert Schuman

13621 Aix-en-Provence, France

(e-mail: pb@lpl.univ-aix.fr)

Abstract

In this paper, parsing as deduction and constraint programming are brought together to
outline a procedure for the specification of constraint-based (chart) parsers. Extending the
proposal in Shieber (1995) which provides a meta interpreter for several deduction sys-
tems, we show how to directly realize the inference rules for chart parsers as Constraint
Handling Rules (Frühwirth, 1998) by viewing the items of a conventional chart parser
as constraints and the constraint base as a chart. This allows the direct use of the con-
straint resolution process to parse sentences in diverse natural language formalisms such as
minimalist grammars (Stabler, 1997; Stabler, 2001) or property grammars (Blache, 2000;
Balfourier et al., 2002).

1 Introduction: Parsing as Deduction

The parsing-as-deduction approach proposed in Pereira & Warren (1983) and ex-

tended in Shieber et al. (1995) and the parsing schemata defined as special deduc-

tion systems in Sikkel (1997) are well established parsing paradigms in computa-

tional linguistics. Their main strengths are their flexibility and level of abstraction

concerning control information inherent in parsing algorithms. This allows for a

uniform presentation and the comparison of a variety of parsing algorithms. Fur-

thermore, they are easily extensible to more complex formalisms, e.g., augmented

phrase structure rules or the ID/LP format.

Constraint Programming (CP) has been used in computational linguistics in sev-

eral areas, for example in (typed) feature-based systems based on Oz (Smolka,

1995), or conditional constraints (Matiasek, 1994), or advanced compilation tech-

niques (Götz & Meurers, 1997) or specialized constraint solvers (Manandhar, 1994).

But to our knowledge, none of these approaches uses constraint programming tech-

niques to implement standard (chart) parsing algorithms directly in a constraint

system.

In this paper, we will bring these two paradigms together, thereby showing how to

2 F. Morawietz and P. Blache

implement algorithms from the parsing-as-deduction scheme by viewing the parsing

process as constraint satisfaction and propagation.

The core idea is that the items of a conventional chart parser are constraints on

labeled links between the words and positions of an input string. Then the infer-

ence rules allow for the deduction of new constraints, again labeled and spanning

parts of the input string, via constraint propagation. The resulting constraint store

represents the chart which can be accessed to determine whether the parse was

successful or to reconstruct a parse tree.

While this may seem a trivial observation it allows for a rapid and flexible method

of implementation. The goal is not necessarily to build the fastest parser, but rather

to build – for an arbitrary algorithm – a parser fast and perspicuously. The advan-

tage of our approach compared to the one proposed in Shieber et al. (1995) is that

we do not have to design a special deduction engine and we do not have to handle

chart and agenda explicitly, i.e., the process can be used in any constraint-based

formalism which allows for constraint propagation and therefore can be seamlessly

integrated into existing applications.

The paper proceeds by reviewing the parsing-as-deduction approach and a par-

ticular way of implementing constraint systems, Constraint Handling Rules (CHR)

as presented in Frühwirth (1998).1 Then it shows how to implement several parsing

algorithms very naturally with constraint propagation rules before concluding with

an outlook on how to extend the technique to more advanced applications.

The paper summarizes and uses results presented in a series of other papers

(Morawietz (1999; 2000a; 2000b; 2000c) and Morawietz and Blache (2000)).

1.1 Related Work

In a series of papers Henning Christiansen (2001; 2002b; 2002a) has described and

developed CHRG, a grammar notation based on CHR. Similarly to the integration

of DCGs into Prolog, the aim of CHRG is to provide an easy way of writing and

parsing grammars within CHR. This aim is slightly different from ours. While

we want to show that it is very easy to adapt existing parsing algorithms and

implement them in CHR, Christiansen takes the approach of providing a “grammar

formalism” in the widest sense. Obviously, this allows for the easy specification of

grammars. The advantages of CHRG (partly derived form CHR) are that they are

robust concerning partial results, that they are flexible enough to handle all sorts

of formalisms and that they are implemented in such a way that the grammars

can be parsed efficiently. The disadvantage is that the clean separation between

the grammar and the logic of the parsing process we will present in our proposal is

blurred.

The idea of using constraint propagation for parsing also appears in Meyer (2000).

But instead of implementing the general deduction rules for parsing, the easier route

of directly implementing grammar rules as CHR (propagation) rules is proposed.

This makes for a more efficient implementation, but lacks the flexibility concerning

1 CHR are provided as a package for SICStus Prolog and ECLiPSe.

Parsing Natural Languages with CHR 3

the parsing mode and the parsing direction of our approach. Especially the ensu-

ing problems with ambiguous grammars seem to create large problems for natural

language systems.

1.2 Parsing as Deduction

Parsing in general is the process of analyzing the structure of an input by decom-

posing it into subparts according to some given grammar. If the process can be

completed successfully, the input is a valid expression of the language defined by

the grammar.

Therefore, to define how to parse a string, one needs the following ingredients:

• a way of initializing the parsing process, i.e., some statements about the ac-

ceptability of (parts of) strings which are used to start the parsing process;

• some rules which allow to derive new statements from existing ones, e.g., the

initial ones, which actually define the parsing mode;

• a way of controlling the process, i.e., of deciding which statements to try next

for possible rule applications;

• and a way of identifying a final statement, i.e., a statement which means that

we successfully decomposed the string.

Parsing-as-deduction basically takes formulas of a logic and uses its axioms and

deduction rules to drive the parsing process.

Obviously, parsing-as-deduction is an instantiation of the scheme given above.

It derives statements about the acceptability of (parts of) strings from other such

statements via inference rules, starts the process with axioms and stops when the

possibilities for further deductions have been exhausted or a predefined goal has

been reached. What does not have to be defined and which actually is seen as an

advantage for the specification of parsing algorithms, is the control information.

The search procedure is not relevant for the specification of a specific algorithm,

but rather for its realization or implementation.

We will recall some basic definitions for convenience. The notations and the three

basic algorithms are directly taken from Shieber et al. (1995).

As usual, strings w result from concatenation of symbols from some alphabet set

Σ, i.e., w ∈ Σ∗. We refer to the decomposition of such a string into its alphabet

symbols with indices. We fix this notation using w = w1 . . . wn for the given in-

put string. A grammatical deduction system or, in Sikkel’s terminology a parsing

schema, is defined as a set of deduction schemes and a set of axioms. These are

given with the help of formula schemata which contain (syntactic) meta-variables

which are instantiated with concrete terms on application of the rules. A deduction

scheme R has the general form

A1 . . . An

C
〈 side conditions on A1 . . . An, C 〉

where the Ai and C are formula schemata. The Ai are called antecedents and C the

consequence. Note that the deduction schemes may refer to the string positions, i.e.,

the indices of the alphabet symbols of the input string, in their side conditions. We

4 F. Morawietz and P. Blache

G = 〈 N, T, S, P 〉

NT = {S, NP, VP, V, PP, P, PN, Det, N1, N}

T = {hit, John, dog, stick, with, the}

and P as given below:

S −→ NP VP N1 −→ N1 PP
VP −→ V NP V −→ hit
VP −→ V NP PP PN −→ John
PP −→ P NP N −→ dog
NP −→ PN N −→ stick
NP −→ Det N1 P −→ with
N1 −→ N Det −→ the

Fig. 1. Example Grammar: PP-attachment

say that such a scheme R applies if we have as antecedents a sequence of formulas

F1, . . . , Fk, k ≥ n such that each Fi, 1 ≤ i ≤ n matches Ai under an appropriate

substitution of terms for the meta-variables and if the side conditions are satisfied.

For a given deduction system, the derivation of a formula F from assumptions

A1, . . . , Ap (in symbols: A1, . . . , Ap ` F) is defined to be a sequence of formulas

F1, . . . , Fq such that F = Fq and each Fi, 1 ≤ i ≤ q, is

• either an instance of an axiom,

• one of the Aj , 1 ≤ j ≤ p,

• or the result of applying a deduction scheme with Fi = C such that there

exist the necessary antecedents Ai1 , . . . , Aik
, i1, . . . , ik ≤ i.

To improve the performance of the implementation of a parser, one also wants to

record work which has been done such that recomputations of (partial) results can

be avoided. To simply store recognized substrings is not enough since one cannot

differentiate between for example two identical occurrences of substrings. Therefore

the statements are enriched by indexing the category recognized, i.e., the terminal or

nonterminal symbol labeling a node in the parse tree, with the position(s) spanned

by that category. These statements are then stored in a well-formed substring table,

also called a chart. The chart does not play a direct role for the specification of

grammatical deduction systems but since we will present examples below, it is

necessary to introduce the complex formulas or statements used there.

Unless specified differently, we assume that we are given a context-free grammar

G = 〈 N, T, S, P 〉 with nonterminals N , terminals T , start symbol S and set of

productions P .2 Each production is of the form A −→ α with A ∈ N, α ∈ (N ∪T)∗.

As a running example, we will use the simple PP-attachment grammar given in

Fig. 1. It is left to the reader to calculate example derivations for the three example

algorithms for a sentence such as John hit the dog with the stick.

2 For Earley’s algorithm we also assume a new start symbol S ′ which is not in N .

Parsing Natural Languages with CHR 5

Table 1. Parsing algorithms as Grammatical Deduction Systems

Bottom-Up Top-Down Earley

Items [j, α •] [j, • β] [i, j, A, α • β]

Axiom [0, •] [0, • S] [0, 0, S′, • S]

Goal [n, S •] [n, •] [0, n, S′, S •]

Scan
[j, α •]

[j + 1, αwj+1 •]
[j, • wj+1β]
[j + 1, • β]

[i, j, A, α • wj+1β]
[i, j + 1, A, αwj+1 • β]

Predict
[j, • Bβ]
[j, • γβ]

〈B −→ γ〉
[i, j, A, α • Bβ]

[j, j, B, • γ]
〈B −→ γ〉

Complete
[j, αγ •]
[j, αB •]

〈B −→ γ〉
[i, k, A, α • Bβ] [k, j, B, γ •]

[i, j, A, αB • β]

Almost all of the parsing systems used in this paper are then defined by specifying

a class of items, a set of axioms, a set of inference rules and a subset of the items,

the goals or final items. For better readability, we follow Shieber et al. in using the

familiar dotted items.

Notational conventions are: n for the length of the string to be parsed; A, B, C, . . .

for arbitrary formulas or nonterminals; a, b, c, . . . for terminals; ε for the empty

string and α, β, γ, . . . for strings of terminals and nonterminals. Formulas used in

parsing will also be called items or edges.

The three example algorithms we will use to illustrate our technique can now be

presented as grammatical deduction systems as given in Tab. 1 (taken from Shieber

et al. (1995)). In the table i, j, k are always between 1 and n.

Although we assume familiarity with these three basic algorithms, we will briefly

comment on the intended interpretations of the respective items. In the case of the

naive bottom-up algorithm, the items are of the form [j, α•] with the interpretation

that we have a stack α of items we recognized reaching up to position j (which

implies that we are still looking forward to parsing the substring starting at j). In

the case of the top-down algorithm, the items [j, • β] mean that we are looking

for categories β starting at position j (implying that we already recognized the

string up to that position). The items in Earley’s algorithm [i, j, A, α • β] are to

be interpreted that we recognized a substring from i to j with the rule A −→ αβ

having already found α, but looking for categories β.

1.3 Constraint Handling Rules

Constraint programming is an elegant, declarative way of solving problems with

higher-level programming languages. It represents a generalization of logic pro-

gramming in the sense that it allows the (logical) specification of a problem on an

arbitrary domain and tries to solve it with a combination of inference and search.

6 F. Morawietz and P. Blache

A complete introduction to constraint programming can be found for example in

Marriott & Stuckey (1998).

There are several constraint programming environments available. The most re-

cent and maybe the most flexible is the Constraint Handling Rules (CHR) package

included in both SICStus Prolog and ECLiPSe (Intelligent Systems Laboratory,

1995; Frühwirth, 1998). All of these CP systems provide mechanisms for solving

constraints. They maintain a constraint base or store which is continually monitored

for possible rule applications, i.e., whether there is enough information present to

successfully use a rule to simplify constraints or to derive new constraints. Whereas

usually one deals with a fixed constraint domain and a specialized solver, CHR is an

extension of the Prolog language which allows for the specification of user-defined

constraints and arbitrary solvers. The strength of the CHR approach lies in the

fact that it allows for multiple (conjunctively interpreted) heads in rules, that it is

flexible and that it is tightly and transparently integrated into the Prolog engine.

In CHR constraints are just distinguished sets of (atomic) formulas. CHR allow

the definition of rule sets for constraint solving with three types of rules: Firstly

simplification rules (symbol <=>) which replace a number of constraints in the

store with new constraints; secondly propagation rules (symbol ==>) which add

new constraints to the store in case a number of constraints is already present; and

thirdly “simpagation” rules (symbol <=> in combination with a \ in the head of

the rule) which replace only those constraints with new ones which are to the right

of the backslash.

To improve efficiency, rules can have guards and pragma declarations. A guard

(separated from the rest of the body by a |) is a condition which has to be met

before the rule can be applied.3 A pragma declaration affects the way the rule is

compiled. Our approach will only introduce the passive declaration, so we ignore the

other possibilities. Declaring a constraint in the head to be passive simply means

that this constraint will not trigger the rule on its own.

We cannot go into the details of the formal semantics of CHR here. The interested

reader is referred to Frühwirth (1998) and references therein. Since we will refer

back to it let us just note that logically, simplification rules are equivalences and

propagation rules are implications if their guard is satisfied. Simpagation rules are

special cases of simplification rules. Soundness and completeness results for CHR

are available (Abdennadher et al., 1996; Abdennadher, 1998).

2 Parsing as Constraint Propagation

The basic observation which turns parsing-as-deduction into constraint propaga-

tion is simple: items of a chart parser are just special formulas which are used

in an inference process. Since constraints in constraint programming are nothing

3 A more careful distinction separates ask and tell guards. Ask guards have to be entailed by the
constraint store whereas tell guards only have to be consistent with it (Saraswat, 1993). This is
also part of CHR, but not used in our approach.

Parsing Natural Languages with CHR 7

Table 2. Parsing systems as CHR programs: Items, Axioms & Goals

Bottom-Up Top-Down Earley

Items edge(X,N) edge(X,N) edge(A,Alpha,Beta,I,J)

Axiom edge([],0) edge([s],0) edge(sprime,[],[s],0,0)

Goal edge([s],Len) edge([],Len) edge(sprime,[s],[],0,Len)

but atomic formulas and constraint handling rules nothing but inference rules, the

connection is immediate.

In more detail, we will present in this section how to implement the three parsing

algorithms given in Tab. 1 in CHR and discuss the advantages and drawbacks of this

approach. Since CHR are integrated in SICStus Prolog, we will present constraints

and rules in Prolog notation, i.e., strings starting with uppercase letters stand for

variables and words with lowercase ones for atoms.

We use the following two types of constraints. The constraints corresponding to

the items will be called edge constraints, see Tab. 2. They have two arguments in

case of the two naive algorithms and five in the case of Earley’s algorithm, i.e.,

edge(X,N)

means in the case of the bottom-up algorithm that we have recognized a list of

categories X up to position N, in the case of the top-down algorithm that we are

looking for a list of categories X starting at position N and in the case of Earley’s

algorithm

edge(A,Alpha,Beta,I,J)

stands for the fact that we found a substring from I to J by recognizing the list of

categories Alpha, but we are still looking for a list of categories Beta to yield cate-

gory A. The second constraint word/2 is only used for efficiency. Since in grammar

rules we do not use the lexical items directly but rather their categories, we do not

use edges to represent that we found a word, but rather the word constraint, as will

become apparent in the scanning rules. This avoids using constraints on the input

words (compared to their category) in the other inferences needlessly.

The grammars are given as Prolog facts, lexical items as

lex(Word,Category)

and grammar rules as

rule(RHS,LHS)

where RHS is a list of categories representing the right hand side and LHS is a single

category representing the left hand side of the rule.

The resulting algorithms are then simple to implement by specifying the inference

8 F. Morawietz and P. Blache

Table 3. Parsing systems as CHR programs: Inference Rules

Scan

Bottom-Up edge(Stack,N), word(N,Cat-_Word) ==>

N1 is N+1,

edge([Cat|Stack],N1).
Top-Down edge([Cat|T],N), word(N,Cat-_Word) ==>

N1 is N+1,

edge(T,N1).
Earley edge(A,Alpha,[Cat|Beta],I,J), word(J,Cat-_Word) ==>

J1 is J+1,

edge(A,[Cat|Alpha],Beta,I,J1).

Predict

Top-Down edge([LHS|T],N) ==>

setof(RHS, rule(RHS,LHS), List) |

post_td_edges(List,T,N).
Earley edge(_A,_Alpha,[B|_Beta],_I,J) ==>

setof(Gamma, rule(Gamma,B), List) |

post_ea_edges(List,B,J).

Complete

Bottom-Up edge(Stack,N) ==>

setof(Rest-LHS, split(Stack,Rest,LHS), List) |

post_bu_edges(List,N).
Earley edge(A,Alpha,[B|Beta],I,K)#Id, edge(B,Gamma,[],K,J) ==>

edge(A,[B|Alpha],Beta,I,J)

pragma passive(Id).

Absorb

Bottom-Up edge(L,N) \ edge(L,N) <=> true.

Top-Down edge(L,N) \ edge(L,N) <=> true.

Earley edge(A,Alpha,Beta,I,J) \ edge(A,Alpha,Beta,I,J) <=> true.

rules as constraint propagation rules, the axioms and the goal items. A summariza-

tion is presented in Tab. 3.

It is obvious how to link the code for the axioms and goals given to the definitions

in Tab. 1. Let us consider Earley’s algorithm for a closer look as to what is going

on in the CHR propagation rules.

In principle the inference rules are translated into CHR in the following way:

The antecedents are transformed into constraints appearing in the head of the

propagation rules, the side conditions into the guard and the consequence is posted

in the body.4

In the scanning step, we can move the head of the list of categories we are looking

4 Note that calling a CHR constraint as a Prolog goal means to insert it into the constraint store
such that it becomes available for constraint resolution steps.

Parsing Natural Languages with CHR 9

for to those we already recognized in case we have an appropriately matching edge

and word constraint in our constraint store. The result is posted as a new edge

constraint with the positional index appropriately incremented.

The prediction step is more complex. There is only one head in a rule, namely an

edge which is still looking for some category to be found. If one can find rules with

a matching LHS, we collect all of them in a list and post the appropriate fresh edge

constraints for each element of that list (predicate post ea edges/3 which posts

edges of the following kind:

edge(LHS,[],RHS,J,J).

The collection of all matching rules in a call to setof/3 is necessary since CHR are

a committed choice language. One cannot enumerate all solutions via backtrack-

ing. If there are no matching rules, i.e., the list of RHSs we found is empty, the

corresponding tests avoid vacuous predictions and therefore nontermination of the

predictor.

Lastly, the completion step is a pure propagation rule which translates literally.

The two antecedents are in the head and the consequence in the body with ap-

propriate instantiations of the positional variables and with the movement of the

category recognized by the passive edge from the categories to be found to those

found. Additionally, the rule contains a pragma declaration on the first head which

is declared to be passive. While we cannot go into detail here, this declaration leads

to the fact that this rule is only tried for inference if a constraint matching the non-

passive head is posted. More on pragma declarations can be found in Frühwirth

(1998).

In the table there is one more rule, called an absorption rule. It discovers those

cases where we posted an edge constraint which is already present in the chart and

simply absorbs the newly created one. We come back to this point below.

Note that we do not have to specify how to insert edges into either a chart or

into an agenda. The chart and the agenda are in fact represented by the constraint

store and therefore built-in. We do not need a specialized deduction engine as was

necessary for the implementation described in Shieber et al. (1995). In fact, the

utilities needed are extremely simple, see Fig. 2.

All we have to do for parsing (predicate parse/1) is to post the axiom5 and on

traversal of the input string to post the word constraints according to the lexicon of

the given grammar. Then the constraint resolution process with the inference rules

will automatically build a complete chart. The call to report/1 will just determine

whether there is an appropriate edge with the correct length in the chart and print

that information to the screen.

Coming back to the issues of chart and agenda: the constraint store functions

as chart and agenda at the same time since as soon as a constraint is added all

rules are tried for applicability. If none apply, the edge will remain dormant until

another constraint is added which triggers a rule together with it.6 So, the parser

5 axiom/0 is a predicate which just calls the edge(s) defined in Tab. 3.
6 Another way to “wake” a constraint is to instantiate any of its variables in which case it will

10 F. Morawietz and P. Blache

parse(L) :-

axiom,

post_constraints(L, 0, Length),

report(Length).

post_constraints([], Length, Length).

post_constraints([Word|String], InLength, Length) :-

setof(Cat, lex(Word, Cat), Cats),

post_words(Cats, InLength, Word),

NewLength is InLength + 1,

post_constraints(String, NewLength, Length).

post_words([],_Position,_Word).

post_words([Cat|Cats], Position, Word):-

word(Position, Cat-Word),

post_words(Cats, Position, Word).

Fig. 2. The utilities for CHR-based deductive parsing

works incrementally. It recursively tries all possible inferences for each constraint

added to the store before continuing with the posting of new constraints from the

post constraints/3 predicate. The way this predicate works at the moment is to

traverse the string from left-to-right. It is trivial to alter the predicate such as to

post the constraints from right-to-left or any arbitrary order chosen. This can be

used to easily test different parsing strategies.

The testing for applicability of new rules also has a connection with the absorption

rules. We absorb the newer edge since we can assume that all possible propagations

have already been done with the old, identical edge constraint so that we can safely

throw the other one away.

As an example for the resulting chart, the output of an Earley-parse for John hit

the dog with the stick assuming the grammar given in Fig. 1 is presented in Fig. 3.

As one can see, the entire constraint store is printed to the screen after the

constraint resolution process stops producing new edges. And, furthermore, the

order of the constraints actually reflects the order of the construction of the edges,

i.e., the chart constitutes a trace of the parse at the same time. Naturally the given

string was ambiguous but only a single solution is visible in the chart. This is due

to the fact that we only did recognition. No explicit parse was built which could

have differentiated between the two solutions. It is an easy exercise to either write

a predicate to extract all possible parses from the chart or to alter the edges in such

a way that an explicit parse tree is built during parsing.

By using a built-in deduction engine, one gives up control of its efficiency. As it

turns out, this CHR based approach is slower than the specialized engine developed

and provided by Shieber et al. (1995) by about a factor of 2, e.g., for a six word

be matched against the rules again. Since all our constraints are ground, this does not play a
role here.

Parsing Natural Languages with CHR 11

| ?- parse([john, hit, the, dog, with, the, stick]).

Input recognized.

word(0,pn-john),

word(1,v-hit),

word(2,det-the),

word(3,n-dog),

word(4,p-with),

word(5,det-the),

word(6,n-stick),

edge(sprime,[],[s],0,0),

edge(s,[],[np,vp],0,0),

edge(np,[],[det,n1],0,0),

edge(np,[],[pn],0,0),

edge(np,[pn],[],0,1),

edge(s,[np],[vp],0,1),

edge(vp,[],[v,np],1,1),

edge(vp,[],[v,np,pp],1,1),

edge(vp,[v],[np,pp],1,2),

edge(np,[],[det,n1],2,2),

edge(np,[],[pn],2,2),

edge(vp,[v],[np],1,2),

edge(np,[det],[n1],2,3),

edge(n1,[],[n],3,3),

edge(n1,[],[n,pp],3,3),

edge(n1,[n],[pp],3,4),

edge(pp,[],[p,np],4,4),

edge(n1,[n],[],3,4),

edge(np,[n1,det],[],2,4),

edge(vp,[np,v],[],1,4),

edge(s,[vp,np],[],0,4),

edge(sprime,[s],[],0,4),

edge(vp,[np,v],[pp],1,4),

edge(pp,[p],[np],4,5),

edge(np,[],[det,n1],5,5),

edge(np,[],[pn],5,5),

edge(np,[det],[n1],5,6),

edge(n1,[],[n],6,6),

edge(n1,[],[n,pp],6,6),

edge(n1,[n],[pp],6,7),

edge(pp,[],[p,np],7,7),

edge(n1,[n],[],6,7),

edge(np,[n1,det],[],5,7),

edge(pp,[np,p],[],4,7),

edge(vp,[pp,np,v],[],1,7),

edge(s,[vp,np],[],0,7),

edge(sprime,[s],[],0,7),

edge(n1,[pp,n],[],3,7),

edge(np,[n1,det],[],2,7),

edge(vp,[np,v],[],1,7),

edge(vp,[np,v],[pp],1,7) ?

Fig. 3. Chart for John hit the dog with the stick

sentence and a simple grammar the parsing time increased from 0.01 seconds to

0.02 seconds on a LINUX PC running SICStus Prolog. This factor was preserved

under 5 and 500 repetitions of the same parse. This may or may not be seen as a

serious problem. However, there are two remarks we want to make. Firstly, speed

was not the main issue in developing this setup, but rather simplicity and ease of

implementation. And secondly it seems that the implementation of the attributed

variables package of SICStus Prolog which is the basis for the CHR package, is too

general to be maximally efficient. Gerald Penn (Penn, 1999; Penn, 2000) reports

two instances of special applications where the efficiency of the implementation was

improved by using specific predicates and not the full library. On implementing co-

routining in a typed feature language built on top of Prolog, it turned out that

a speed-up by a factor of about 50 could be achieved by using when/2, and on

implementing typed feature structure unification that, by using some undocumented

internal predicates directly rather than get atts/2 and put atts/2, a speed-up of

a little over a factor of 28 could be achieved with the ALE (Carpenter & Penn,

1998) Head-Driven Phrase Structure (HPSG) grammar. If we can apply similar

techniques, the implementation may be able to improve on its performance.

12 F. Morawietz and P. Blache

The Shieber et al. paper contains more advanced parsing algorithms which can be

transferred into the CHR setting. To transfer the parsing algorithm for unification

grammars we simply include the necessary unifications explicitly into the body of

the rules. Below we give the completion rule for unification grammars defined in

such a way that the unification for the relevant categories B and B2 computes the

result B1 and an explicit most general unifier Sigma which is then applied to the

other categories A, Alpha and Beta.

edge(A,Alpha,[B|Beta],I,K), edge(B2,Gamma,[],K,J) ==>

unify(B,B2,B1,Sigma),

apply(Sigma,A,A1),

apply(Sigma,Alpha,Alpha1),

apply(Sigma,Beta,Beta1) |

edge(A1,[B1|Alpha1],Beta1,I,J).

Even the Shieber et al. approach to Combinatory Categorial Grammars can be

transferred seamlessly. Consider for example forward application:

[X/Y, i, k] [Y, k, j]
[X, i, j]

This results in the most trivial completion rule:

edge(X/Y,I,K), edge(Y,K,J) ==>

edge(X,I,J).

We think that this short discussion shows convincingly how trivially the Parsing-

as-Deduction algorithms can be transferred.

To sum up this section, the advantages of the approach lie in its flexibility and its

availability for rapid prototyping of different parsing algorithms since it avoids any

explicit handling of chart or agenda. While we used the examples from the Shieber

et al. article, one can also implement all the different parsing schemata presented

as deduction schemes in Sikkel (1997). This also includes advanced schemes such

as left-corner or head-corner parsing, the refined Earley-algorithm proposed by

Graham et al. (1980), or (unification-based) ID/LP parsing as defined in Morawietz

(1995) (we just have to include guards to check for precedence, see Fig. 4), or any

improved version of any of these. Furthermore, because of the logical semantics of

CHR with their soundness and completeness, all correctness and soundness proofs

for the algorithms can be directly applied to this constraint propagation proposal.

The main disadvantage of the proposed approach certainly lies in its apparent lack

of efficiency. One way to overcome this limitation is discussed in the next section.

3 Extensions of the Basic Technique

There are many directions the extensions of the presented technique of CHR parsing

might take. Firstly, one might consider parsing of more complicated grammars

Parsing Natural Languages with CHR 13

edge(A,Alpha,[B|Beta],I,K), edge(B,Gamma,[],K,J) ==>

precedes(Alpha,B),

precedes(B,Beta) |

edge(A,[B|Alpha],Beta,I,J).

Fig. 4. The completion step for ID/LP grammars

compared to the CF ones which were assumed so far. Following Shieber et al., one

can consider unification-based grammars or tree adjoining grammars. Since we think

that the previous sections showed that the Shieber et al. approach is transferable

in general, the results they present are applicable to our proposal as well. Instead,

we want to consider parsing minimalist grammars (Chomsky, 1995) as defined in

recent work by Stabler (1997; 2001)7 and property grammars as defined in, e.g.,

Blache (2000) or Balfourier et al. (2002).

3.1 Minimalist Parsing

We cannot cover the theory behind the derivational minimalism approach presented

in Stabler’s papers in any detail. Very briefly, lexical items are combined with each

other by a binary operation merge which is triggered by the availability of an

appropriate pair of clashing features, here noted as cat(C) for Stabler’s categories

c and comp(C) and spec(C) for =c.8 Furthermore, there is a unary operation move

which, again on the availability of a pair of clashing features (e.g., -case, +case),

triggers the extraction of a (possibly trivial) subtree of the tree under consideration

and its merging in at the root node. On completion of these operations the clashing

feature pairs are removed (in the parlance of minimalist linguistics: checked). The

lexical items are of the form of linked sequences of trees. Accessibility of features

is defined via an order on the nodes in this chain of trees.9 A parse is acceptable

if all features have been checked, apart from one category feature which spans

the length of the string. The actual algorithm works naively bottom-up and since

the operations are at most binary, the algorithm is CYK-based. This is the most

obvious achievement of Stabler’s proposal – minimalist parsing can be reduced to

CYK parsing.

An initial edge or axiom in this minimalist parsing system cannot simply be

assumed to cover the part of the string where it was found since it could have been

the result of a movement operation. So the elements of the lexicon which will have to

be moved (they contain a phrasal movement trigger -X) actually have the positional

7 The basic code for the implementation underlying the paper was kindly provided by Ed Stabler.
Apart from the implementation in CHR, all the rest is his work and his ideas.

8 The split of the merge rule between merging complementizers and specifiers allows for a more
perspicuous presentation of the inference rules, as one can see in Tab. 5.

9 We ignore certain aspects for simplicity. The reader is referred to the original literature for the
full details.

14 F. Morawietz and P. Blache

Table 4. A CHR-based minimalist parser: Items, Axioms and Goals

Items edge(I, J, Chain, Chains)

Axiom edge(I, I, Chain, Chains)

〈[Chain|Chains] −→ ε〉, I a variable
edge(I, I+1, Chain, Chains)

〈[Chain|Chains] −→ wi+1〉
and there is no -X in [Chain|Chains]

edge(J, J, Chain, Chains)

〈[Chain|Chains] −→ wi+1〉, J a variable
and there is a -X in [Chain|Chains]

and I and I+1 occur in [Chain|Chains]

Goal edge(0, Length, [cat(C)], [])

indices instantiated in the last of those features appearing. All other movement

triggers and the position it will be base generated are assumed to be traces and

therefore empty. Their positional markers are identical variables, i.e., they span

no portion of the string and one does not know their value at the moment of the

construction of the axioms. They have to be instantiated during the minimalist

parse. The same is true for the empty elements appearing explicitly in the lexicon.

As an example consider the set of items as defined by the axioms, see Tab. 3.1.

The general form of the items is such that we have the indices first, then we separate

the chain of trees into the first one and the remaining ones for better access. The

axioms post edges corresponding to the lexical items. As an example for the actual

edges and to illustrate the discussion about the possibly variable string positions in

the edges, consider the recognition of the string believe it with a remnant movement

analysis. The lexical item for it takes the form:

lex(it,I,[(K,K)=[cat(d),-case(I,J)]]) :- J is I+1.

where I=1 if we instantiate it as an axiom. The resulting edge will be edge(K, K,

[cat(d),-case(1,2)]], []). We know that it has been moved to cover positions

1 to 2, but we do not know (yet) where it was base generated.

These non-ground edges actually have an effect on the inference rules, see Tab. 5.

Apart from this complication, they pretty much reflect a bottom-up approach to

merging and moving lexical items. Therefore we will not discuss the details of how

the conditions in the guards achieve to test for the correct configurations. The

interested reader is referred to Stabler (2001).

We will briefly discuss the Prolog predicates unif vars/4, test vars/4 and

test vars/8.10 In the Shieber at al. system, we compared ground positional indices

to find matching edges. Since CHR are sensitive to the instantiation of variables, it

is not possible to do the same here.11 The above mentioned predicates basically test

10 Since we are dealing with the positions, the arguments always are members of a pair stemming
from one edge.

11 CHR have a compile time option which allows the disabling of this sensitivity. Unfortunately,

Parsing Natural Languages with CHR 15

Table 5. A CHR-based minimalist parser: Inference Rules

Move

edge(I, J, [+(X)|RestHead], Chains0) ==>

test_vars(I, J, P, Q),

Link =.. [X,K,P],

select([-Link|RestLinks], Chains0, Chains1),

add(RestLinks, Chains1, Chains),

linkStart(RestHead, NewHead, K, Q, L, M) |

edge(L, M, NewHead, Chains).

MergeComp

edge(I, J, [comp(X)|RestHead], Chains0),

edge(K, L, [cat(X)|RestComp], Chains1) ==>

test_vars(I, J, K, L, P, Q, R, S),

check(RestHead, NewHead, P, S, A, B,

RestComp, Chains0, Chains1, Chains) |

edge(A, B, NewHead, Chains).

MergeSpec

edge(I, J, [cat(X)|RestSpec], Chains0),

edge(K, L, [spec(X)|RestHead], Chains1) ==>

test_vars(I, J, K, L, P, Q, R, S),

check(RestHead, NewHead, P, S, A, B,

RestSpec, Chains0, Chains1, Chains) |

edge(A, B, NewHead, Chains).

Absorption

edge(I, J, L, Ls) \ edge(P, Q, L, Ls) <=>

unif_vars(I, J, P, Q) |

true.

for their arguments to be variables. If they are, new ones are returned such that

the relationship (identity) between the members of pairs are preserved. If they are

ground, they are unified. It is obvious that the price we pay is a decrease in efficiency

since the CHR system actually has to enter the guards to determine applicability

of the rules.

We cannot go into any detail how the actual parser work. Nevertheless, the

implementation shown in Tab. 5 demonstrates how easily one can implement even

complicated parsers without the need for extra utilities to deal with chart and

agenda. Furthermore, it offers the possibility to implement feature cancellation as

real constraint solving which opens up an interesting new perspective for processing.

doing so does not help since CHR are a committed choice language and therefore the unification
cannot be undone via backtracking.

16 F. Morawietz and P. Blache

3.2 Property Grammar Parsing

In order to motivate the use of a new formalism, we highlight some limitations in

the use of constraints in the generative paradigm. In particular, one of the main

problems comes from the fact that linguistic information is expressed by means

of rules (or rule schemata). In this case linguistic constraints are expressed over

structures instead of linguistic objects. This limits the parsing process to a generate-

and-test approach.

Constraints in linguistic theories generally play only a local role:12 they are used

to control the instantiation of linguistic objects (the categories) and represent rela-

tions between these objects (or their components). Then, a clear distinction between

the objects and their properties becomes possible, which favors declarativity. For

example, in a theory like GPSG (Gazdar et al., 1985), one can find constraints at

different levels of the description: linear precedence, feature cooccurrence restric-

tion or universal instantiation principles. But not all the information is represented

with constraints and during a parse, one has to select a local tree first and then

verify that this tree satisfies the different constraints. This is typically a passive use

of constraints.

The problem is different in HPSG in which most of the information is actually

represented by means of constraints (cf. Sag (1999) and especially for an implemen-

tation (Blache & Paquelin, 1996; Meurers & Minnen, 1998)). However, the hierar-

chical information remains predominant in the sense that verification of constraints

can only be applied to an implicit local tree. The verification of the principles for

example requires the construction of a hierarchical structure containing a mother

and its daughters. This does not mean that such a structure has to be fully specified.

Some delaying mechanisms can obviously be applied and active constraints can be

used locally. But in this case, we can globally characterize the use of constraints

for the parsing process as passive and parsing does not amount to pure constraint

resolution.

One of the reasons for these problems is the generative interpretation of the

relation between grammars and languages. In this case, the notion of derivation is

central and parsing an input consists in finding a derivation generating it. Such a

conception is revealed in the approaches cited above with the role played by the

local trees (which usually amounts to one derivation step). Parsing is then conceived

as a derivation mechanism controlled by constraints (often reduced to unification).

This certainly stems from the fact that licensing of constraints is implemented

as improved versions of the generate-and-test paradigm to ensure some sort of

efficiency (and sometimes even termination).

12 Constraints in this case are not active all along the parsing process, but only for specific struc-
tures built during the parse. Such constraints are local because their scope is reduced according
to the knowledge of the constrained structure.

Parsing Natural Languages with CHR 17

3.2.1 Some Desiderata for Constraint-Based NLP

An optimal use of constraints, both from the linguistic and the computational

point of view, should meet some requirements. We present in this section some

basic desiderata for a genuine constraint-based approach.

One important property concerns knowledge representation: as indicated before,

the problem with classical approaches partly comes from the fact that information

is represented my means of rules. Defining the parsing process in terms of constraint

resolution is coupled with the representation of all linguistic information with con-

straints. In this case, a grammar can be conceived as an actual constraint system

and constraints are stipulated over objects, not over structures. In our proposal,

all constraints are expressed over categories (which do not contain any hierarchical

information which is a difference to HPSG). This aspect has an important conse-

quence on the declarativity of the approach. Indeed, it allows a clear distinction

between the representation of information (in particular the form of the objects)

and the mechanisms for calculating with them.

Another important point is the fact that, insofar as the set of constraints con-

stitutes a system, all constraints are at the same level. Obviously, some heuristics

can rely on a certain hierarchization (for example by means of weights) or on the

control of constraint relaxation. But this does not alter the fact that the constraint

system has to be taken as a whole. This characteristic is thus in opposition with the

way of using constraints in Optimality Theory (see Prince & Smolensky (1993)). In

this theory, ranking constraints is an essential element of the grammar. No infor-

mation can be computed without such a hierarchy (which then implicitly contains

linguistic information).

Constraint homogeneity also constitutes an important property for constraint-

based theories: a constraint must represent homogeneous information. One con-

straint encodes one type of syntactic information and only one. In this way, we

systematize the idea initiated with GPSG (with the distinction between ID and LP

information) which consists in representing the different pieces of information of

the grammar separately. We need to distinguish different types of constraints, each

one representing a specific part of linguistic information. As a side effect, this elimi-

nates implicit information. Moreover, each type of constraint becomes linguistically

motivated.

The last requirement concerns the notion of grammaticality. One interesting prop-

erty of constraint solving is the possibility of building an approximate answer when

no exact solution can be found. In a constraint-base approach, such an approxima-

tion is nothing but the state of the constraint system after verifying its satisfiability

for a given input. Let’s see what does this mean for parsing. In classical approaches,

finding a solution (i.e., parsing) consists in associating a syntactic structure with

a given input. For generative methods, this involves finding a derivation from a

distinguished symbol toward this input. Doing this, we answer the question of

grammaticality: an input is grammatical iff a solution (a derivation) can be found.

However, this seems to us a very restrictive concept of analysis. Indeed, a more

relevant question concerning parsing (especially unrestricted texts or more gener-

18 F. Morawietz and P. Blache

ally real natural language input) should not verify grammaticality of an input, but

rather provide as much information about it as possible. In this view, any kind of

input can be parsed, whatever its form: it is an intrinsically robust way of defining

the parsing problem. Therefore we propose to replace the notion of grammatical-

ity with that of characterization which is more general: a characterization is the

state of the constraint system for a given input, consisting of satisfied and violated

constraints. The only difference between the characterization of ill-formed and well-

formed inputs is that the former contains at least one violated constraint whereas

the later only contains satisfied ones. Characterization subsumes grammaticality in

the sense that verifying grammaticality consists in building a characterization in

which no constraint violation is allowed.

3.2.2 Presentation of Property Grammars

The Property Grammars formalism, hereafter PG (cf. Blache (2001)), implements

these requirements: declarativity, information homogeneity, satisfiability. Compared

to other linguistic formalism, it does not rely on a two-stage process consisting in

building first a structure and then applying constraints to it. PG proposes the

representation of all information by means of constraints (also called properties).

This conception relies on the observation that what linguists usually call a con-

straint corresponds to an explicit and homogeneous piece of information. It is the

case with linear precedence (even if GPSG uses the term of statement). PG simply

systematizes this move initiated with GPSG which consisted in representing all in-

formation separately. In the end, a PG grammar forms a constraint system which

contains all necessary information and which does not employ any other mechanism

than constraint resolution.We insist on this point which is of deep importance: no

generative function, be it explicit as in the Optimality Theory (the GEN function)

or in Constraint Dependency Grammars or implicit as in HPSG is used here.

One of the most important aspect in the specification of a constraint-based ap-

proach, lies in the definition of the objects to be constrained. It is possible to

stipulate constraints over objects of any level. Usually, constraints in linguistics

are defined over high-level objects such as local trees in DCG or linguistic signs in

HPSG. However, the consequence is that we need first to build these objects before

being able to verify a constraint. The interest in stipulating linguistic information

in terms of constraints over low-level objects is that they can be verified at the

very beginning of the process. An affectation in this case can be chosen even before

any other treatment. In PG, constraints are expressed over categories. As usual in

constraint-based approaches, a category is a set of attribute-value features pairs.

PG is not a lexicalized theory in the sense that the lexicon contains little syntactic

information. A lexical item is formed by three main features which are label, synt

and sem. In the same way as typed feature structure approaches do, the form of

the structure may vary according to the category, some features being appropriate

to all categories, some other being more specific. The following example illustrates

a possible shape for a verbal structure:

Parsing Natural Languages with CHR 19�����������
label

synt � agr

valence �
sem

��� rel

agent

object

� ��
� ����������

In PG, all properties involve such categories. No hierarchical information is con-

tained in these objects and a category can be specified at the lexical or the phrasal

level. We will not present the category specifications in more detail here. However,

we insist on the fact that categories are the only elements to be used by properties,

at the exclusion of any other structured object such as local trees for example.

We propose to represent different kind of linguistic relations in PG by means

of different constraints. We illustrate this aspect here with syntactic information,

but the hypothesis is that other linguistic domains such as prosody, phonology,

semantics or pragmatics can also be represented by means of such properties. As

for syntax, the kind of information that we have to represent concerns different as-

pects such as linear order, selectional restrictions, sub-categorization, etc. What we

propose is to represent this information by means of relations between categories.

One consequence is that no relation between two objects needs to be propagated

through a structure. In other words, in the manner of dependency grammars, re-

lations are directly specified between the objects and not inherited in one way or

another. However, this does not mean that PG represents syntax in a flat way. A

hierarchized representation of syntactic structure is still relevant and PG specifies

information over lexical items as well as phrases.

The considered syntactic relations are represented in terms of relations between

sets of categories. This gives the formalism expressive power and makes it possible

to represent – if necessary – contextual information. A category is simply specified

by a set of such relations between those other categories which play a role in its

structure. Lets see more precisely what these relation are before describing how a

grammar is organized.

We use 6 different types of properties in order to represent syntactic informa-

tion.13 They are defined as follows:

Obligation (oblig): Set of compulsory, unique categories (they correspond to the

heads of the phrase). This is a relation between a set of categories (the possible

heads) and one category (the projection, usually the phrase).

Uniqueness (uniq): Set of categories which cannot be repeated in a phrase.

[Requirement (⇒):] Cooccurrence between sets of categories. This relation ex-

presses generally selection between objects. It can be expressed between any

categories, not necessarily an obligatory one. The possibility of using sets of cat-

egories allows the expression of contextual selections.

Exclusion (6⇔): Restriction of cooccurrence between sets of categories.

13 This set of properties could be extended if necessary in order to integrate other levels of linguistic
analysis such as prosody or semantics.

20 F. Morawietz and P. Blache

Linearity (≺): Linear precedence constraints.

Dependency (;): Dependency relations between categories. This relation con-

cerns more precisely syntax/semantic interface, it is used to build the semantic

representation of the category. We do not develop this point in this paper.

All these constraints, as it is usually the case, play a role as a filter but can also

be used in order to instantiate new information. Let us illustrate these different

properties with some examples taken from a grammar for French NPs:

• Obligation: oblig(NP) ={N, AP, Pro}

• Uniqueness : uniq(NP) = {Det, N, AP, PP, Sup, Pro}

• Linearity : Det ≺ AP AP ≺ N

• Requirement : {le être [N,P]}
VP
⇒ Clit [refl,N,P] (Je me le suis dit / I told that

to myself)

If the categories le (clitic) and a finite verb être (with agreement features N

and P) cooccur (characterizing a VP), then a reflexive clitic (which agrees

with the verb) also has to be present.

• Exclusion: Clit[refl]

VP

6⇔ lui (*Je me lui dis / *I told him myself)

In a VP, a reflexive clitic cannot cooccur with the clitic lui.

• Dependency : Det ; N AP ; N

Please note that in spite of the fact that information is hierarchically represented,

no constituency information is expressed by any constraint. In fact, one can observe

that a property which would specify a set of constituents for a given category is

redundant with the information contained by other properties. More precisely, the

categories βi that participate in the description of another category α are necessarily

the constituents of α. Reciprocally, a constituent βi of a category α stands neces-

sarily in some relation with another constituent βi of α or α itself (in the obligation

relation). A category that does not have any relation with another participant of

the description of α is simply not one of its constituent. Such a characteristic is

useful for the representation of specific elements, in particular in spoken languages,

that can appear almost everywhere during a discourse, even within a unit. It is then

not necessary to stipulate explicitly a set of constituents.

3.2.3 Parsing as Constraint Resolution

We propose in this section an overview of how does parsing works in PG. Before

describing more precisely this process, let’s highlight some points. First of all, insofar

as syntactic information is only represented by means of constraints, a grammar

then forms a constraint system. One important consequence is that all constraints

are at the same level and therefore can be verified independently from each others.

This is an important difference to generative approaches in which the constituency

information has first to be evaluated in order to build local trees before verifying

other constraints. Moreover, in contrast to Optimality Theory, no ranking between

constraints has to be applied. Obviously, one can propose some heuristics at the

Parsing Natural Languages with CHR 21

computational level in order to modulate the importance of each constraint in the

perspective of their relaxation for example. But this remains at the heuristic level.

In PG, parsing can then be implemented using constraint programming tech-

niques such as constraint resolution. More precisely, and classically, parsing with

PG consists in finding an assignment (a set of categories) that satisfies the set of

constraints. Fortunately, this problem is heavily constrained by the fact that instead

of finding an assignment over the entire set of categories, the problem consists in

evaluating a given assignment over the constraint set: an input is a set of words

that can be associated with a set of categories from which the different assignments

will be built.

The interpretation of a constraint system in terms of constraint graphs is classical

in constraint programming. We will see here how can we take advantage of that for

specifying and representing linguistic information. In PG, each property is a relation

between different (sets of) objects. A set of properties can then be represented as a

graph in which categories constitute the nodes and constraints corresponds to the

edges.

The graph given below represents the set of constraints describing the NP. In

this representation, the types of the constraints are indicated as graph labels (d for

dependency, x for exclusion, l for linearity, o for obligation, r for requirement).

This representation makes the role of the obligation relation which associates

a category with its head precise. It is the only hierarchical relation. The target

category of this relation is considered as the root of the graph and corresponds to

the phrasal category described by the graph. We indicate this category in bold for

better readability.��������������
NP

PP
d

��
Det

l ,,
d

((

l��

lnnnn

66nnnn

N

o

mm

p
p

p
p

O
O

O
O
oo x //

p

__

Pro

o

nn

AP

d

00

l

77

o

FF

N [com]
r

``

N [prop]

x

oo

� �������������
The same representation can be used for the description of a given input. Such a

description consists in the set of relevant constraints (i.e., constraints that can be

evaluated for a set of given categories). The description of a category in a context is

then formed by the set of constraints that can be evaluated. Such graphs are called

description graphs. The example immediately below presents the description graph

for NP = {Det, N}. ����� NP

Det

o

OO

N
d

jj
ptt

� ����
One of the advantages of using graphs for the representation of syntactic infor-

mation lies in the fact that any information can be represented separately. Under

22 F. Morawietz and P. Blache

Table 6. Description of the four NPs in: dans la marine tu as droit short blanc

chemisette blanche

Category Input Constituents Properties

NP21 la marine Det2 N3 P+={1, 5, 7, 9, 12}
P− = ∅

NP22 short blanc N7 Adj8 P+={3, 7, 10, 12}
P−={5}

NP23 chemisette blanche N9 Adj10 P+={3, 7, 10, 12}
P−={5}

NP24 short blanc NP22 NP23 P+={12}
chemisette blanche P−={6}

this perspective, one can choose to represent only some of the properties. This can

be useful for example in shallow parsing.

Lets take an example from a spoken French corpus. For simplicity, we only focus

here on the case of the NP which can be (roughly) described by the following subset

of properties:
- Linearity: (1) Det ≺ N; (2) Det ≺ AP; (3) N ≺ AP; (4) N ≺ PP

- Requirement: (5) N[com] ⇒ Det; (6) NP ⇒ Conj

- Exclusion: (7) N 6⇔ Pro; (8) N[prop] 6⇔ Det;

- Dependency: (9) Det ; N; (10) AP ; N; (11) PP ; N

- Obligation: (12) Oblig(NP) = {N, Pro, AP, Conj}

From this set of properties, we can give the characterizations of the different

NPs. A characterization is formed by the sets of satisfied and violated constraints,

respectively represented by P+ and P−. The constraints in the following examples

are indicated by their indexes.

dans la marine tu as droit short blanc chemisette blanche

in the Navy you get white short white shirt

Four NPs participate in the description of this input, one of them being of higher

level, see Tab. 3.2.3.

The first NP is positively characterized, it satisfies all its relevant properties.

NP22 and NP23 partly satisfy the set of constraints. In both cases, a requirement

property (stipulating that a determiner has to be realized together with the noun)

is violated. NP24, on the other hand, does not satisfy a requirement property con-

cerning the realization of the conjunction. However the corresponding categories

can be used as constituents for other categories as NP24. More generally, as soon as

a category can be characterized, it also can be part of the assignment (i.e., used as

a constituent). These last cases illustrate the possibility of describing any kind of

input, even those that can be considered as ill-formed with respect to the grammar.

But this example also illustrates the fact that grammaticality is a particular char-

acterization: in PG, ruling out ungrammatical inputs simply consists in restricting

the building of P− to the empty set. It is also a possibility, in terms of heuristics,

Parsing Natural Languages with CHR 23

Table 7. Some more characterizations of dans la marine tu as droit short blanc

chemisette blanche

Category Input Constituents Properties

PP25 dans la marine Prep1 NP21 P+ 6= ∅
P− = ∅

NP26 tu Pro4 P+={7, 12}
P− = ∅

VP27 as droit short blanc V5 Adv6 NP24 P+ 6= ∅
chemisette blanche P− = ∅

to restrict the cardinality of this set as well as using a constraint hierarchy favoring

some constraints.

3.2.4 Determining Coverage

The core of the process is the construction of the characterization sets. A general

mechanism makes use of these sets in order to find a characterization covering the

entire input.

A characterization made up of lexical categories (cf. the NP’s characterizations

in the previous example), constitutes a covering of the segment of the input corre-

sponding to the positions of the constituents. The question is different for embedded

constituents. In this case, the set of categories covers the corresponding part of the

input if there exists a characterization for all embedded constituents describing

non-lexical categories. In the previous example, the characterization NP22, NP23

covers the NP24 because there exists characterizations (resp. N7, Adj8 N9, Adj10)

for its embedded constituents.

Let us be more precise on the evaluation of covering categorizations. Characteri-

zations do not take into account the status of their embedded constituents. In other

words, lexical and non-lexical categories play the same role. This means that each

position corresponds to a category. In the case of embedded constituents, we then

have several successive categories with the same type.

Let’s complete the example of the previous section with other characterizations.

In the following Tab. 3.2.4, insofar as we did not propose some constraints for PP

and VP, we only indicate the situation with respect to the emptiness of the P sets.

One covering of the input will be the set of categories: PP25, NP26, VP27 which

characterizes a sentence.

A naive implementation of a mechanism consisting in enumerating all the possible

sets of categories is obviously not efficient. Indeed, let m be the number of words

of the input, c the maximum number of categorizations for each word, then the

number n of categories to analyze is bounded by n = 2mc. Then, the number of

sets of categories to analyze is bounded by 2n.

Several mechanisms can be added in order to reduce the number of sets to an-

alyze and control the resolution process. In the first case, we can choose to build

24 F. Morawietz and P. Blache

only sets of juxtaposed categories. At a higher level, one can consider only sets

corresponding to subsets of properties. The satisfaction process itself can be con-

trolled using several heuristics. In particular, it is possible to filter the satisfiability

according to a threshold given by the cardinality of the set of unsatisfied properties

P−: it is possible to build only characterizations with less than a certain amount of

unsatisfied constraints. At the extreme, we can reduce the satisfiability to positive

characterizations.

Another kind of heuristic consists in defining a hierarchization within the set of

properties. In this case, the technique of the threshold mentioned above can be

modulated with such a hierarchization, some constraints playing a more important

role than others.

3.2.5 Implementing Property Grammars

We describe in this section an implementation of Property Grammars in CHR.

We want to show with such an implementation that property grammar can be

implemented directly using only constraint resolution, which is not actually possible

with classical generative approaches.

For the implementation in CHR, we simply have to declare the basic properties as

constraints, see Sec. 3.2 above. They are presented in Tab. 8. Our items are simply

statements about the categories and their position in the input string. Since we do

not have a chart parser, but rather are looking for characterizations of the input, we

do not have axioms and goals as before. Instead, as one can see, we use additional

constraints for the sets of satisfied/nonsatisfied constraints, i.e., we have constraints

pplus/4 and pminus/4which encode in their first argument the set of constraints we

are considering (the module) and an identifier, in their second argument the type

of constraint and in the last two the specific categories involved. We could have

recorded the satisfied and violated constraints in other ways but choose this one

simply to stay within CHR and use constraint propagation to characterize the input.

We also associate a unique identifier with each constraint such that we are able to

Table 8. A CHR-based property grammar parser: Items and Constraints

Items cat(Cat,N)

Constraints obli(Mod,Cat,Id)

impl(Mod,Cat1,Cat2,Id)

prec(Mod,Cat1,Cat2,Id)

cooc(Mod,Cat1,Cat2,Id)

depe(Mod,Cat1,Cat2,Id)

alph(Mod,Cats)

pplus(Mod-Id,Type,Cat1-N,Cat2-M)

pminus(Mod-Id,Type,Cat1-N,Cat2-M)

refer to particular constraints in the solution. In particular, the alph/2 constraint

Parsing Natural Languages with CHR 25

encodes the possible constituents of a module and is therefore used in building

the projection lines, see Tab. 9. The other constraints are self-explanatory; obli/3

means that the category is obligatory in a module; impl/4 means that within a

module one category implies another and similarly for precedence (prec/4), co-

occurrence (cooc/4) ad dependency (depe/4).

The program takes the input string, a Prolog list of words, and traverses it.14

For each lexical entry, it posts the corresponding category constraint, i.e., cat(X,Y)

where X is a category and Y its position in the numeration.

The CHR implementation immediately starts out by building the elementary

trees of the initial categories from the posted cat/2 constraints via constraint prop-

agation. In general, the CHR engine, i.e., constraint resolution, is triggered as soon

as constraints matching the heads are posted.

Basically, the CHR program looks at two category constraints and – if they are

in the set of constraints we are considering – uses them together with a constraint

from the grammar, as the head of constraint propagation rules. The constraints

propagated contain the information whether the pair of categories satisfy the con-

straint from the grammar or not. In this way, we build a complete table of results

on all pairs of categories.15

So, we build a complete table of pplus/4, pminus/4 constraints for all pairs

of categories matching the heads of our propagation rules. These constraints store

the information about the interaction of any two categories with the resulting rule

and set of constraints which licensed them. Nothing more has to be implemented

to achieve this behaviour since it is built into the CHR engine. All we have to do is

specify the right propagation rules and to post the constraints from the grammar

and input which makes for a very simple and easy to understand program.

So, again, the utilities for parsing property grammars are extremely simple, see

Fig. 5. We simply post the constraints for the words and the grammar and report

on the output.

Generally, in all the CHR rules dealing with the constraints from the grammar,

we apply the rule if we can find two categories within the constraint store which are

in the same constituent and a constraint which checks some configuration on them.

Only this last constraint triggers the rule since we declared all other constraints

to be passive. Note that this ensures that we did all possible projections in each

constituent before we post other constraints.

Since, if two category constraints match the head of a rule, they do so in either

order, we use the guard to force the linear order as it appears in the input string.

The propagation rules for parsing property grammars are given in Tab. 9. Lets

pick the rule dealing with precedence constraints for a closer look. We are consid-

ering a precedence constraint Id on the categories X and Y within the constituent

14 Again from left-to-right although this is arbitrary and can be varied.
15 Since in the end we are interested in bigger chunks of lexical items then just two, we have to

do some post-processing to interpret the entries in the table in the right way. For example, if
a precedence constraint succeeds on two pairs of categories, this does not imply that it also
succeeds for the entire triple. So, one violation among all the pairs is sufficient to cause failure
of that constraint.

26 F. Morawietz and P. Blache

Table 9. A CHR-based property grammar parser: Inference Rules

Building Projection Lines

project @ cat(X,N), alph(Cat,Alph,_) ==>

member(X,Alph) |

cat(Cat,N).

Obligatory Constraints

obli @ cat(X,N)#I1, cat(Z,N)#I2, cat(Y,M)#I3, cat(Z,M)#I4,

obli(Z,Cat,Id) ==>

N < M |

((X == Cat ; Y == Cat) ->

pplus(Z-Id,obli,X-N,Y-M)

; pminus(Z-Id,obli,X-N,Y-M))

pragma passive(I1),passive(I2),passive(I3),passive(I4).

Implicational Constraints

impl @ cat(X,N)#I1, cat(Z,N)#I2, cat(Y,M)#I3, cat(Z,M)#I4,

impl(Z,Cat1,Cat2,Id) ==>

N < M |

(((X == Cat1, Y \== Cat2);(X \== Cat2, Y == Cat1)) ->

pminus(Z-Id,impl,X-N,Y-M)

; pplus(Z-Id,impl,X-N,Y-M))

pragma passive(I1),passive(I2),passive(Id),passive(I4).

Precedence Constraints

prec @ cat(X,N)#I1, cat(Z,N)#I2, cat(Y,M)#I3, cat(Z,M)#I4,

prec(Z,Cat1,Cat2,Id) ==>

N < M |

((X == Cat2, Y == Cat1) ->

pminus(Z-Id,prec,X-N,Y-M)

; pplus(Z-Id,prec,X-N,Y-M))

pragma passive(I1), passive(I2), passive(I3), passive(I4).

Coocurrence

cooc @ cat(X,N)#I1, cat(Z,N)#I2, cat(Y,M)#I3, cat(Z,M)#I4,

cooc(Z,Cat1,Cat2,Id) ==>

N < M |

(((X == Cat1, Y == Cat2);(X == Cat2, Y == Cat1)) ->

pminus(Z-Id,cooc,X-N,Y-M)

; pplus(Z-Id,cooc,X-N,Y-M))

pragma passive(I1),passive(I2),passive(I3),passive(I4).

Absorption

absorb1 @ cat(X,N) \ cat(X,N) <=> true.

absorb2 @ pplus(X,Y,A,B) \ pplus(X,Y,A,B) <=> true.

absorb3 @ pminus(X,Y,A,B) \ pminus(X,Y,A,B) <=> true.

Parsing Natural Languages with CHR 27

process(In) :-

numeration(In,1),

post_grammar,

generate_output.

numeration([],_).

numeration([H|T],N):-

lex(H,Cat),

cat(Cat,N),

N1 is N + 1,

numeration(T,N1).

Fig. 5. The utilities for parsing property grammars

Z with indices N and M. We check satisfiability of the constraint in the head of

the implication and then add the corresponding pplus or pminus constraint to the

store.16 Note that all the constraints actually appearing in the constraint store are

ground such that we can test for literal identity.

The post-processing then just collects all the sets, gets all pairs of appearing

categories if they are within the same range and collects all positive and negative

constraints attached to them. While doing so, we interpret its members in the

following way:

• if we have a successful obligatory or implicational constraint on any two cat-

egories within a constituent, we can ignore all the failed ones;

• if we have a failed precedence or co-occurrence constraint on any two cate-

gories within a constituent, we have to ignore all the successful ones.

Furthermore, the output of the program – consisting of the pplus/pminus-sets gen-

erated by the resolution process – can be varied according to the given threshold

of failed constraints, in the extreme case reducing the process to finding only the

positive characterizations, see Fig. 6 for the output of processing le livre. As can

be seen in this admittedly very small example, the program generates two charac-

terizations, one without violations for the fact that le livre indeed is an NP with

determiner le and noun livre and the other one under the assumption that le is

part of a superlative which leads to two violated constraints. The constraint store

which follows in the printout contains the constraints in the order they are posted.

As one can see, we start out with the category constraints which are followed by

some constraints of the grammar. As soon as we have enough information to infer

further constraints, those are added to the store and the process continues until

no new constraints can be deduced. The final constraint store contains both the

pminus and pplus constraints for all possible characterizations.

16 We need four cat constraints to ensure that both categories belong to the same constituent,
i.e., that Z indeed covers N and M.

28 F. Morawietz and P. Blache

| ?- process([le,livre]).

++++++++++++++++++++++++++++++++++++++

Categories: det-1 and n-2

P+(np) = [2, 3, 4, 5, 6, 7, 8, 9]

P-(np) = []

++++++++++++++++++++++++++++++++++++++

Categories: sup-1 and n-2

P+(np) = [2, 4, 5, 6, 7, 9]

P-(np) = [3, 8]

++++++++++++++++++++++++++++++++++++++

cat(det,1),

cat(n,2),

cat(np,2),

cat(np,1),

cat(sup,1),

alph(np,[det,n,adjp,sup],1),

alph(adjp,[adj,adv],1),

alph(sup,[det,adv,adj],1),

obli(np,n,2),

obli(adjp,adj,2),

obli(sup,adj,2),

pplus(np-2,obli,sup-1,n-2),

pplus(np-2,obli,det-1,n-2),

impl(np,n,det,3),

pminus(np-3,impl,sup-1,n-2),

pplus(np-3,impl,det-1,n-2),

impl(sup,adj,det,3),

impl(sup,adj,adv,4),

prec(np,det,n,4),

pplus(np-4,prec,sup-1,n-2),

pplus(np-4,prec,det-1,n-2),

prec(np,det,adjp,5),

pplus(np-5,prec,sup-1,n-2),

pplus(np-5,prec,det-1,n-2),

prec(np,det,sup,6),

pplus(np-6,prec,sup-1,n-2),

pplus(np-6,prec,det-1,n-2),

prec(np,n,adjp,7),

pplus(np-7,prec,sup-1,n-2),

pplus(np-7,prec,det-1,n-2),

prec(np,n,sup,8),

pminus(np-8,prec,sup-1,n-2),

pplus(np-8,prec,det-1,n-2),

prec(adjp,adv,adj,3),

prec(sup,det,adj,5),

prec(sup,det,adv,6),

prec(sup,adv,adj,7),

cooc(np,adjp,sup,9),

pplus(np-9,cooc,sup-1,n-2),

pplus(np-9,cooc,det-1,n-2),

depe(np,det,n,10),

depe(np,adjp,n,11),

depe(np,sup,n,12),

depe(adjp,adv,adj,4),

depe(sup,det,adj,8),

depe(sup,adv,adj,9) ? ;

Fig. 6. Output and constraint store for le livre

The full, commented code of the implementation is available in a technical report

(Blache & Morawietz, 2000).

3.3 Compiling the Grammar Rules into the Inference Rules

A proposal for improving the efficiency of the proposed approach consists in moving

the test for rule applicability from the guards into the heads of the CHR rules. One

can translate a given context-free grammar under a given set of inference rules

into a CHR program which contains constraint propagation rules for each grammar

rule, thereby making the process more efficient.17 For simplicity, we discuss only

the simplest case of bottom-up parsing.

For the translation from a CF grammar into a constraint framework we have to

17 This is essentially the approach proposed in Meyer (2000). In this paper, one can also find a
proof that such a translation is correct.

Parsing Natural Languages with CHR 29

distinguish two types of rules – those with from those without an empty RHS –

since empty RHSs constitute a problem for bottom-up chart parsing.18 We treat

the easier case of the conversion first. For each rule in the CF grammar with a

non-empty RHS we create a constraint propagation rule such that each daughter

of the rule introduces an edge constraint in the head of the propagation rule with

variable, but appropriately matching string positions but a fixed label. The new,

propagated edge constraint spans the entire range of the positions of the daughters

and is labeled with the (nonterminal) symbol of the LHS of the CF rule. In our

example, the resulting propagation rule for s looks as follows:

edge(I,K,np), edge(K,J,vp) ==> edge(I,J,s)

As usual for bottom-up parsing, the translation is a little bit more complicated for

rules with empty RHSs. Basically, we create a propagation rule for each empty rule,

e.g., A −→ ε, such that the head is an arbitrary edge, i.e., both positions and the

label are arbitrary variables, and post new edge constraints with the LHS of the CF

rule as label, using the positional variables and spanning no portion of the string,

resulting in CHR rules of the following type:

edge(I,J, Sym) ==> edge(I,I,A), edge(J,J,A)

But obviously rules of this type lead to nontermination since they would propagate

further constraints on their own output which is avoided by including a guard which

ensures that empty edges are only propagated for every possible string position once

by testing whether the edge spans a string of length one. Recall that storing and

using already existing edge constraints is avoided with an absorption rule.19 Since

these empty constraints can be reused an arbitrary number of times, we get the

desired effect without having to fear nontermination. Although this is not an elegant

solution, it seems that other alternatives such as analyzing and transforming the

entire grammar or posting the empty constraints while traversing the input string

are not appealing either since they give up the one-to-one correspondence between

the rules of the CF grammar and the constraint program which is advantageous in

debugging.

With this technique, the parsing times achieved were better by a factor of a

third compared to the Shieber et al. implementation. Although now the process

of the compilation obscures the direct connection between parsing-as-deduction

and constraint propagation somewhat, the increase in speed makes it a worthwhile

exercise. There are some further ways to improve the performance of the resulting

CHR parsers involving for example pragma declarations or more sophisticated ways

of handling empty categories via a precompiled link relation which we cannot go

into here for reasons of space.

18 Top-down parsing, on the other hand, has to be careful with left recursion and care has to be
taken in the parser to avoid nontermination.

19 The proper and more elegant treatment of this problem would test in the guard of the CHR
rule whether the edge constraint to be posted is already entailed by the constraint store. Un-
fortunately, having a constraint in the guard of a clause in CHR causes that constraint to be
posted which is definitely not what is needed.

30 F. Morawietz and P. Blache

4 Conclusion

In the paper, the similarity between parsing-as-deduction and constraint propaga-

tion is used to propose a flexible and simple system which is easy to implement and

therefore offers itself as a testbed for different parsing strategies (such as top-down

or bottom-up), for varying modes of processing (such as left-to-right or right-to-

left) or for different types of grammars (such as for example minimalist or property

grammars). Compared to the Shieber approach, the pure version seems to be lack-

ing in efficiency. This can be remedied by providing an automatic compilation into

more efficient specialized parsers.

More work has to be invested in the realization of a larger system combining these

techniques with constraint solvers for existing constraint-based natural language

theories to see whether further benefits can be gotten from using parsing as con-

straint programming. To be more specific, due to the flexibility of the CHR system,

one can now use the constraint programming approach to drive other constraint

solving or constraint resolution techniques (also implemented in CHR) resulting in

a homogenous environment which combines both classical constraint solving with

a more operational generator.

Specifically, one can use each created edge to post other constraints, for example

about the well-formedness of associated typed feature structures. By posting them,

they become available for other constraint handling rules. In particular, systems

implementing HPSG seem to suffer from the problem how to drive the constraint

resolution process efficiently. Some systems, as for example ALE (Carpenter &

Penn, 1998) use a phrase structure backbone to drive the process. The proposal here

would allow to use the ID/LP schemata directly as constraints, but nevertheless as

the driving force behind the other constraint satisfaction techniques. However, this

remains speculative.

References

Abdennadher, Slim. (1998). Analyse von regelbasierten Constraintlösern. Ph.D. thesis,
Ludwig-Maximilians-Universität München.

Abdennadher, Slim, Fruehwirth, Thom, & Meuss, Holger. (1996). On confluence of con-
straint handling rules. Lecture Notes in Computer Science, 1118, 1–15.

Balfourier, Jean-Marie, Blache, Philippe, & van Rullen, Tristan. (2002). From shallow to
deep parsing using constraint satisfaction. Proceedings of COLING 2002.

Blache, Philippe. (2000). Property grammars and the problem of constraint satisfaction.
Linguistic theory and grammar implementation. ESSLLI 2000 workshop.

Blache, Philippe. (2001). Les Grammaires de Propriétés : Des contraintes pour le traite-
ment automatique des langues naturelles. Herms.

Blache, Philippe, & Morawietz, Frank. (2000). A non-generative constraint-based formal-
ism. Pages 1–28 of: Morawietz, Frank (ed), Some aspects of natural language process-
ing and constraint programming. Arbeitspapiere des SFB 340, no. 150. Universität
Tübingen.

Blache, Philippe, & Paquelin, Jean-Louis. (1996). Active constraints for a direct interpre-
tation of HPSG. Proceedings of HPSG’96.

Carpenter, Bob, & Penn, Gerald. 1998 (March). ALE: The attribute logic engine, version

Parsing Natural Languages with CHR 31

3.1. User manual. Laboratory for Computational Linguistics, Philosophy Department,
Carnegie Mellon University, Pittsburgh, PA 15213.

Chomsky, Noam. (1995). The minimalist program. Current Studies in Linguistics, vol. 28.
MIT Press.

Christiansen, Henning. (2001). CHR as grammar formalism, a first report. http://arxiv.
org/abs/cs.PL/0106059. Presented at ERCIM Workshop on Constraints, Prague.

Christiansen, Henning. (2002a). Abductive language interpretation as bottom-up deduc-
tion. Wintner, Shuly (ed), Proceedings of NLULP 2002, Natural Language Understand-
ing and Logic Programming. To appear.

Christiansen, Henning. (2002b). Logical grammars based on constraint handling rules.
Stuckey, S. (ed), Proceedings of the Eighteenth International Conference on Logic
Progamming, ICLP 2002. Springer. Poster Abstract. To appear.

Frühwirth, Thom. (1998). Theory and practice of constraint handling rules. Journal of
logic programming, 37(1–3), 95–138. Special Issue on Constraint Logic Programming.

Gazdar, Gerald, Klein, Ewan, Pullum, Geoffrey K., & Sag, Ivan A. (1985). Generalized
Phrase Structure Grammar. Cambridge, Massachusetts: Harvard University Press.

Götz, Thilo, & Meurers, Detmar. (1997). Interleaving universal principles and relational
constraints over typed feature logic. Pages 1–8 of: Proceedings of the ACL/EACL
conference ’97. Association for Computational Linguistics, Madrid, Spain.

Graham, G., Harrison, M. G., & Ruzzo, W. L. (1980). An improved context–free recog-
nizer. Pages 415–462 of: ACM Transactions on Programming Languages and Systems
2 (3). ACM.

Intelligent Systems Laboratory. (1995). SICStus Prolog user’s manual. Tech. rept. Swedish
Institute of Computer Science.

Manandhar, Suresh. (1994). An attributive logic of set descriptions and set operations.
Proceedings of the 32nd. Annual Meeting of the Association for Computational Linguis-
tics. ACL.

Marriott, Kim, & Stuckey, Peter J. (1998). Programming with constraints. MIT Press.

Matiasek, Johannes. (1994). Principle-based processing of natural language using CLP
techniques. Ph.D. thesis, TU Wien.

Meurers, Detmar, & Minnen, Guido. (1998). Off-line constraint propagation for efficient
HPSG processing. Webelhuth, G., Koenig, J.-P., & Kathol, A. (eds), Lexical and con-
structional aspects of linguistic explanation. CSLI.

Meyer, Bernd. (2000). A constraint-based framework for diagrammatic reasoning. Journal
of Applied Artificial Intelligence, 14(4), 327–344.

Morawietz, Frank. (1995). A Unification-Based ID/LP Parsing Schema. Pages 162–173 of:
Proceedings of the International Workshop on Parsing Technologies. ACL/SIGPARSE,
Prag.

Morawietz, Frank. (1999). Bottom-up chart parsing as constraint propagation. http:

//tcl.sfs.uni-tuebingen.de/~frank/.

Morawietz, Frank. (2000a). Chart parsing and constraint programming. Proceedings of
COLING-2000.

Morawietz, Frank. (2000b). Chart parsing as constraint propagation. Proceedings of
the International Workshop on Parsing Technologies IWPT 2000. ACL/SIGPARSE,
Trento.

Morawietz, Frank. (2000c). Chart parsing as constraint propagation. Pages 29–50 of:
Morawietz, Frank (ed), Some aspects of natural language processing and constraint pro-
gramming. Arbeitspapiere des SFB 340, no. 150. Universität Tübingen.

32 F. Morawietz and P. Blache

Penn, Gerald. (1999). An optimized prolog encoding of typed feature structures. Pages
124–138 of: Proceedings of the 16th International Conference on Logic Programming.

Penn, Gerald. (2000). Applying constraint handling rules to HPSG. Proceedings of the
First International Conference on Computational Logic (CL2000), Workshop on Rule-
Based Constraint Reasoning and Programming.

Pereira, Fernando C. N., & Warren, David H. D. (1983). Parsing as deduction. ACL
proceedings, 21st Annual Meeting, vol. 13.

Prince, Alan, & Smolensky, Paul. (1993). Optimality Theory: Constraint interaction in
generative grammars. Technical Report RUCCS TR-2. Rutgers Center for Cognitive
Science.

Sag, Ivan, & Wasow, T. (1999). Syntactic Theory. A Formal Introduction. CSLI.

Saraswat, Vijay A. (1993). Concurrent constraint programming. Cambridge, Mas-
sachusetts: MIT Press.

Shieber, Stuart M., Schabes, Yves, & Pereira, Fernando C. N. (1995). Principles and
implementation of deductive parsing. Journal of Logic Programming, 24(1–2), 3–36.

Sikkel, Klaas. (1997). Parsing schemata: A framework for specification and analysis of
parsing algorithms. ETACS Series: Texts in Theoretical Computer Science. Springer.

Smolka, Gert. (1995). The Oz programming model. Pages 324–343 of: van Leeuwen, Jan
(ed), Computer Science Today. Lecture Notes in Computer Science, vol. 1000. Berlin:
Springer-Verlag.

Stabler, Edward P. (1997). Derivational minimalism. Pages 68–95 of: Retoré, Christian
(ed), Logical aspects of computational linguistics. Berlin: Springer. LNAI 1328.

Stabler, Edward P. (2001). Minimalist grammars and recognition. Pages 327–352 of:
Rohrer, Christian, Rossdeutscher, Antje, & Kamp, Hans (eds), Linguistic form and its
computation. CSLI Publications.

