
UniMoK: A System for Combining Equational

Unification Algorithms?

Stephan Kepser1 and Jörn Richts2

1 SfS, University of Tübingen
Wilhelmstr. 133, 72074 Tübingen, Germany

kepser@sfs.nphil.uni-tuebingen.de
2 Theoretische Informatik, RWTH Aachen

Ahornstr. 55, 52074 Aachen, Germany
richts@informatik.rwth-aachen.de

1 Combining Unification Algorithms

Equational unification algorithms can be used in resolution based theorem provers
[9] and rewriting engines [6] to improve their handling of equality. Originally, the
requirements of these theorem provers and rewrite engines were such that the
unification algorithms had to compute complete sets of unifiers. But with the
advent of constraint based approaches to theorem proving [4] and rewriting [8]
the interest in unification algorithm that worked merely as decision procedures
grew because minimal complete sets of unifiers can be very large – e.g., doubly
exponential in the number of variables of the problem in the case of the theory
AC – and are hence costly to compute.

Because actual unification problems usually contain function symbols from
several different signatures, the following combination problem is an important
task in unification theory: Given unification algorithms for equational theories
E1, E2, . . . , En over pairwise disjoint signatures, provide a general method that
gives a unification algorithm for the union E1 ∪ E2 ∪ . . . ∪ En of these theories.
Solutions for this problem were provided by Schmidt-Schauß [10] and Boudet
[3] for the combination of algorithms calculating complete sets of unifiers and
by Baader and Schulz [1] for combining decision procedures. The combination
algorithm presented in [1] is mostly of theoretical interest, it contains many
non-deterministic decisions, thus the search space that this algorithm spans is
so huge, that it is unusable for practical implementations. Therefore the authors
developed optimisation methods [7] for the combination algorithm by Baader
and Schulz to gain an implementation that can be used in practise. This imple-
mentation is UniMoK.

UniMoK stands for Unification Module for Keim. It contains algorithms
for unification in certain equational theories and it provides several combination
methods for them. All combination algorithms in UniMoK are extensions and
optimisations of the combination method by Baader and Schulz [1].
? This work was supported by a DFG grant (SPP “Deduktion”) and by the Esprit

working group 22457 – CCL II of the EU.

P. Narendran and M. Rusinowitch (Eds.): RTA’99, LNCS 1631, pp. 248–251, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



UniMoK: A System for Combining Equational Unification Algorithms 249

2 Basic Algorithms

The first aim of UniMoK is to provide an implementation of the combina-
tion method by Baader and Schulz and suitable component algorithms for some
theories. The combination method of Baader and Schulz requires component
algorithms that can solve so-called Ei-unification problems with linear constant
restrictions (LCR) for the component theories Ei to be combined. An Ei-unifica-
tion problem with LCR consists of a set of equations Γ and a linear order < on
the variables and constants of Γ where the terms in Γ are built from variables,
free constants, and the signature of Ei. A substitution σ is a unifier of (Γ, <)
if σ(s) =Ei σ(t) for all equations s

.= t ∈ Γ and if σ(x) does not contain any
constant a with x < a for all variables x ∈ Γ .

UniMoK offers algorithms for solving unification problems with LCR for the
following equational theories:

– the free theory (syntactic unification),
– the theory A of an associative function symbol

(with a depth bound, not the Makanin decision procedure),
– the theory AC of an associative and commutative function symbol,
– the theory ACI of an associative, commutative and idempotent function

symbol,
– the theory BR of Boolean rings.

For most of these theories, the algorithm could be easily obtained by ex-
tending an existing algorithm for unification with constants. For the theory of
Boolean rings, a method for constant elimination (see [10]) is used.

All these algorithms were implemented as decision procedures and as algo-
rithms computing complete sets of unifiers. The implementation of the combi-
nation algorithm can cope with both kinds of algorithms, i.e., it can work as a
decision procedure itself or compute complete sets of unifiers.

The combination algorithm of Baader and Schulz can also be used to combine
constraint solvers for so-called quasi-free structures [2]. Unification algorithms
are a special case of such constraint solvers. In order to use this property, compo-
nent algorithms for rational trees and for feature structures were implemented.

3 Optimised Algorithms

The naive implementation of the combination method of Baader and Schulz is
mostly for experimental purposes. Due to its large search space of non-deter-
ministic choices this method is not useful for most practical problems. Therefore
the authors developed an optimisation technique for this combination method
called the deductive method [7]. The implementation of this deductive method
is the central and most interesting part of UniMoK. In short, many decisions
in the combination algorithms need not be non-deterministically guessed but
can be deduced on the base of one of the component theories involved, the
unification problem given, and other decisions already made. Hence the deductive



250 S. Kepser, J. Richts

combination algorithm consults the component theories, if they can deduce that
certain decisions have to be made deterministically in order for their subproblems
to remain solvable. If a component returns such a decision, this decision might
enable other components to deduce further decisions. If this process comes to
an end before all decisions have been made, the combination algorithm has to
make a non-deterministic choice. With this choice it can consult the components
again.

The method obviously demands special deductive component algorithms that
can deduce such decisions. An equational theory for which only a unification
algorithm for problems with LCR exists, can still be used in this combination
method but it does not contribute to the deductive process. UniMoK provides
component algorithms computing decisions for the free theory and the theories
A, AC, and ACI, for rational trees and feature structures. It also contains general
algorithms for collapse-free and regular theories.

Due to its modular, object-oriented approach, UniMoK is simple to extend.
To add a new equational theory E, one has to provide a method for deciding
E-unification problems with LCR. In order to contribute to the optimisation,
there should also be a method for participating in the deductive process. This
is a method that takes a unification problem and a partially specified linear
constant restriction as input and returns more information on the decisions to
be made.

4 Implementation and Experimental Results

UniMoK is implemented in Common Lisp on base of the theorem prover devel-
opment tool box Keim [5]. Keim is an open, modular, object-oriented system
geared towards ease of use and extensibility, rapid prototyping and universality.
It is not designed towards run-time efficiency. To use UniMoK, an installation
of Keim is required. UniMoK, thereby, becomes a part of Keim, and theorem
provers developed in Keim can use UniMoK for equational unification. In op-
posite to Keim, a major design goal behind UniMoK is the development of
efficient code. Basically, all that is needed from Keim is the module for first or-
der terms which could possibly be replaced with sustainable effort by something
more efficient, if needed.

Experimental results show that it is crucial for the deductive combination
method in which order the remaining non-deterministic decisions are selected. In
[7] the authors presented the so-called iterative strategy, which chooses all non-
deterministic decisions for one component first before proceeding to choices for
the next component. Run time tests in [7] showed that this strategy is superior
for the example problems used there.

However, new run time tests show that this is not true in general. The fol-
lowing table contains sets of example problems solved with the deductive combi-
nation method. The problems are randomly generated on the base of a signature
containing several A, AC, ACI and free function symbols. Each set contains 200
problems; roughly half of the problems in each set are unifiable. All run times



UniMoK: A System for Combining Equational Unification Algorithms 251

are in seconds. The ‘bktrk’-column gives the number of backtracking steps.

Ded+Iter Ded
time bktrk time bktrk

1 816 1953 81 152
2 232 780 >1h
3 330 800 1158 1982
4 58 250 42 110
5 1362 3971 141 401
6 >1h 103 295
7 676 2217 189 689
8 19 1 19 1
9 67 33 75 33

10 16 1 15 1

Ded+Iter Ded
time bktrk time bktrk

11 20 7 21 10
12 21 8 21 8
13 32 50 31 30
14 21 47 26 22
15 154 394 3931 12335
16 26 50 30 31
17 319 1116 83 147
18 1250 2627 44 107
19 178 462 58 169
20 99 414 43 159

For some sets, e.g., sets 1, 5, and 6, the iterative strategy (‘Ded+Iter’) is
much worse than the default strategy (‘Ded’) where all decisions of a certain
kind (i.e., identifications; see [7]) are made first; for other sets (2, 3, 15) the
iterative strategy is still superior.

Further experiments are needed to develop a strategy combining the strengths
of both strategies. Making the component theories choose the next non-deter-
ministic decision might be another option to enhance the selection strategy.

UniMoK is available at http://www-lti.informatik.rwth-aachen.de/
Forschung/unimok.html.

References

1. Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational
theories: Combining decision procedures. JSC, 21:211–243, 1996.

2. Franz Baader and Klaus U. Schulz. Combination of constraint solvers for free and
quasi-free structures. Theoretical Computer Science, 192:107–161, 1998.

3. Alexandre Boudet. Combining unification algorithms. JSC, 16(6):597–626, 1993.
4. Hans-Jürgen Bürckert. A resolution principle for clauses with constraints. In

Mark E. Stickel, editor, CADE-10, pp. 178–192, LNAI 449, Springer, 1990.
5. Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith,

Jörn Richts, and Jörg H. Siekmann. Keim: A toolkit for automated deduction. In
Alan Bundy, editor, CADE-12, pp. 807–810, LNAI 814, Springer, 1994.

6. Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo
a set of equations. SIAM Journal on Computing, 15:1155–1195, 1986.

7. Stephan Kepser and Jörn Richts. Optimisation techniques for combining constraint
solvers. In Maarten de Rijke and Dov M. Gabbay, editors, Frontiers of Combining
Systems, FroCoS’98. Kluwer Academic Publishers, 1998.

8. Claude Kirchner and Hélène Kirchner. Constrained equational reasoning. In Gas-
ton H. Gonnet, editor, Proceedings of SIGSAM 1989 International Symposium on
Symbolic and Algebraic Computation: ISSAC’89, pages 382–389. ACM Press, 1989.

9. G.D. Plotkin. Building-in equational theories. Machine Intelligence, 7:73–90, 1972.
10. Manfred Schmidt-Schauß. Unification in a combination of arbitrary disjoint equa-

tional theories. Journal of Symbolic Computation, 8(1,2):51–99, 1989.


	Combining Unification Algorithms
	Basic Algorithms
	Optimised Algorithms
	Implementation and Experimental Results

