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Abstract

Model theoretic syntax is concerned with studying the descriptive complexity of

grammar formalisms for natural languages by defining their derivation trees in

suitable logical formalisms. The central tool for model theoretic syntax has been

monadic second-order logic (MSO). Much of the recent research in this area has

been concerned with finding more expressive logics to capture the derivation trees

of grammar formalisms that generate non-context-free languages. The motiva-

tion behind this search for more expressive logics is to describe formally certain

mildly context-sensitive phenomena of natural languages. Several extensions to

MSO have been proposed, most of which no longer define the derivation trees

of grammar formalisms directly, while others introduce logically odd restrictions.

We therefore propose to consider first-order transitive closure logic. In this logic,

derivation trees can be defined in a direct way. Our main result is that transi-

tive closure logic, even deterministic transitive closure logic, is more expressive

in defining classes of tree languages than MSO. (Deterministic) transitive closure

logics are capable of defining non-regular tree languages that are of interest to

linguistics.

1 Introduction

Model theoretic syntax is a research program in mathematical linguistics introduced by

Rogers [22]. It is concerned with studying the descriptive complexity of grammar for-

malisms for natural languages by defining their derivation trees in suitable logical for-

malisms. The central tool for model theoretic syntax has been monadic second-order

logic (MSO), interest in which is motivated by its relationship to context-free gram-

mars: the yields of MSO-definable tree languages are context-free string languages

(see [27]).
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Much of the recent research in model theoretic syntax has been concerned with

finding more expressive logics to capture the derivation trees of grammar formalisms

that generate non-context-free languages. The motivation for this is the desire to cap-

ture all phenomena of natural languages by model theoretic means. While the morphol-

ogy and syntax of most natural languages are known to be describable by context-free

string languages, there are a few phenomena that transcend this framework. Among

these “mildly context-sensitive” phenomena are cross-serial dependencies in verb clus-

ters of Dutch and Swiss German [9, 25] and parts of the morphology of Bambara [5].

Even in the context of the model theoretic description of mildly context-sensitive

phenomena, MSO has played a central role. For example, Rogers [23] extends MSO

to n-dimensional trees, Kolb et al. [13] encode non-regular tree language in regular

tree languages, and Langholm [14] extends MSO by adding quantification over certain

functions, following Lautemann et al. [15] who characterized the context-free string

languages in a similar fashion.

The main constraints placed on logics for model theoretic syntax are that they

should be decidable, be natural from a logical point of view, and correspond to au-

tomata theoretical complexity measures of tree or string languages. These constraints

to some extent conflict with each other. For instance, finding logics that correspond

to particular formal language classes may result in a logic that is somewhat unnatural

from a logical point of view or undecidable, due to closure or decision properties of the

corresponding language class. Furthermore, some of the extensions of MSO discussed

above have in common that they no longer define the derivation trees of grammar for-

malisms directly.

In this paper, we consider a different approach to extending the definability of

MSO: first-order transitive closure logic (FO(TC)), which was introduced by Immer-

man (see the references in [10]) to capture the complexity class NLOGSPACE descrip-

tively. The main motivation for this approach is that derivation trees can be defined in

a direct fashion. On the other hand, the expressive power of FO(TC) is large enough to

describe the known mildly context-sensitive phenomena of natural language. Indeed,

we show here that the classes of tree languages definable by FO(TC) strictly extend the

classes of tree languages definable by MSO. This is true even for deterministic transi-

tive closure logic. These results may look somewhat surprising, because Moschovakis

[19] showed that the transitive closure of an MSO-definable binary relation is MSO de-

finable. This let to a wide spread common belief in computational linguistics, spelled

out explicitely in [3], that MSO should be the more expressive logic as compared to

FO((D)TC). The higher expressive power of FO(DTC) is based on the capability of

taking transitive closures over relations on tuples of nodes instead of individual nodes.

Indeed it is possible to define a non-regular tree language using a deterministic tran-

sitive closure over a relation on pairs of nodes. While FO(TC) can define derivation

trees of grammars directly, as well as describe non-context-free phenomena, it does not

retain decidability, as we will demonstrate below.
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2 Preliminaries

We consider finite labelled ordered ranked trees. A tree is ordered, if for each node in

the tree its set of children is totally ordered. A tree is ranked, if the number of children

of a node is a function of the label.

A signature Σ consists of a set of function symbols S and an arity function ρ : S →N

that assigns each function symbol its arity. Function symbols of arity 0 are called

constants. We will only consider finite signatures. The set TΣ of trees (or terms) over a

signature Σ are inductively defined as follows: {c | c ∈ S,ρ(c) = 0} ⊆ TΣ and if f ∈ S

with ρ( f ) = n > 0 and t1, . . . ,tn ∈ TΣ then f (t1, . . . ,tn) ∈ TΣ. For a given signature Σ, a

tree language is just a subset of TΣ.

The yield of a tree is the sequence of labels of leaves of a tree, i.e., yield : TΣ → S∗

such that yield(c) = c for every constant (leaf) c and yield( f (t1, . . . ,tn)) = yield(t1) ◦
· · · ◦ yield(tn), where ◦ denotes string concatenation.

To describe trees by means of logics we regard them as relational structures. In this

view, function symbols from S turn into node labels, i.e., unary predicates. For a finite

signature of function symbols Σ there is an r ∈ N such that r is the maximal arity of a

function symbol in Σ. We define r successor relations S1, . . . ,Sr. A pair of nodes (x,y)
stands in the relation Si(x,y) if x has a label with arity of at least i and y is the i-th child

of x.

A tree language is regular iff it is definable by an MSO-sentence. The yield lan-

guage of a regular tree language is a context-free string language. Every context-free

string language is the yield of some regular tree language.

Certainly not every relational structure is a tree. And it is also well known, that the

class of structures that are finite trees or trees is not first-order logic axiomatizable, but

MSO-axiomatizable.

For a thorough discussion of these issues the reader is kindly referred to [22].

3 Transitive Closure Logic

A fundamental restriction in the expressive power of first-order logic is the lack of any

type of recursion mechanism. One of the simplest and most fundamental queries that

are not first-order expressible is the transitive closure, denoted TC. It assigns to a given

binary relation E on a universe U its reflexive transitive closure, i.e., the set of all pairs

(x,y) ∈U ×U such that there exist z0, . . . ,zr ∈U with z0 = x,zr = y and E(zi,zi+1) for

all i < r. It was first shown in [8] that TC is not expressible in FO.

Let M be a set and R ⊆ M ×M a binary relation over M. The transitive closure

TC(R) of R is the smallest set containing R and for all x,y,z ∈ M such that (x,y) ∈
TC(R) and (y,z) ∈ TC(R) we have (x,z) ∈ TC(R), i.e.,

TC(R) :=
\

{W | R ⊆W ⊆ M×M,∀x,y,z ∈ M : (x,y),(y,z) ∈W =⇒ (x,z) ∈W}.

This notion can be extended to relations over tuples. Let k ∈ N and R a binary relation

over k-tuples (R ⊆ Mk ×Mk). Then

TC(R) :=
\

{W | R ⊆W ⊆ Mk ×Mk
,∀x̄, ȳ, z̄ ∈ Mk : (x̄, ȳ),(ȳ, z̄) ∈W =⇒ (x̄, z̄) ∈W}.
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Deterministic transitive closure is the transitive closure of a deterministic, i.e., func-

tional relation. For an arbitrary binary relation R over k-tuples we define its determin-

istic reduct by

RD := {(x̄, ȳ) ∈ R | ∀z̄ : (x̄, z̄) ∈ R =⇒ ȳ = z̄}.

Now

DTC(R) := TC(RD).

Since neither the transitive closure of a relation nor its deterministic counterpart are

definable in FO, as was shown in [8], it makes sense to add these operators to first-order

logic to extend its expressive power in moderate and controlled way.

Definition 1 The formulae of FO(TC) are defined by adding to first-order logic the

transitive closure operator (TC):

If ϕ is an FO(TC) formula, x̄ = x1, . . . ,xn, ȳ = y1, . . . ,yn are a subset of the

free variables of ϕ such that ∀i, j,xi 6= y j, and s̄ = s1, . . . ,sn, t̄ = t1, . . . ,tn
are terms, then [TCx̄,ȳ ϕ]s̄, t̄ is an FO(TC) formula. For FO(DTC) we add

the deterministic transitive closure operator. If ϕ is an FO(DTC) formula,

then [DTCx̄,ȳ ϕ]s̄, t̄ is an FO(DTC) formula.

We also consider logics in which the length of the tuples are restricted to be of length

at most k, which are denoted by FO(TCk) or FO(DTCk). Of special interest are the

cases where k = 1, i.e., monadic transitive closure logic, and where k = 2, i.e., tran-

sitive closures are taken over binary relations on pairs. It is clear from the definition

that if m ≤ n, FO(TCm) is included in FO(TCn) and similarly for their deterministic

counterparts.

A predicate of the form [TCx̄,ȳ ϕ] ([DTCx̄,ȳ ϕ]) is supposed to denote the (determin-

istic) transitive closure of the relation defined by ϕ.

Definition 2 We define M |= ϕ for FO(TC) or FO(DTC) in the usual way. To evaluate

predicates defined with the transitive closure operator, we define

M |= [TCx̄,ȳ ϕ]s̄, t̄

iff

(s̄M
, t̄M) ∈ TC{(ā, b̄) | M |= ϕ[ā, b̄]}.

And

M |= [DTCx̄,ȳ ϕ]s̄, t̄

iff

(s̄M
, t̄M) ∈ DTC{(ā, b̄) | M |= ϕ[ā, b̄]}.

We just mention the following in passing. For every formula in FO(DTC) there ex-

ists an equivalent formula in FO(TC) (see, e.g., [10]). Secondly, Engelfriet and Hooge-

boom [6] provided an automaton model for FO(DTC). For every k, the logic FO(DTCk)

corresponds to a particular type of deterministic pebble tree walking automata with k

heads. Whether there exists also an automaton model for FO(TC) is an open question.
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To provide some intuition on the use and expressive power of FO(TC) and FO(DTC)

we show how to define a linear order on the nodes of a tree. A detailed presentation

of this property of FO(DTC) can be found in [11]. We assume a given finite signature

Σ = (S,ρ) and maximal arity r. The dominance relation in a tree can be defined by an

FO(TC)-formula in the following way

dom(x,y) := [TCx,y S1(x,y)∨S2(x,y)∨·· ·∨Sr(x,y)](x,y).

More interestingly, the dominance relation is already definable in FO(DTC1) by the

following formula

dom(x,y) := [DTCy,x S1(x,y)∨S2(x,y)∨·· ·∨Sr(x,y)](y,x).

In order to be able to use a deterministic transitive closure here one has to look at

trees from the leaves to the root. The “child-of” relation is non-deterministic, but each

node has a unique parent. Hence we define dominance via the deterministic transitive

closure of the parent relation. This idea goes back to Etessami and Immerman [7].

That two nodes x and y are siblings and x is to the left of y can be expressed in FO by

a disjunction as follows

LSib(x,y) := ∃z
_

i=1,...,r−1
j=i+1,...,r

Si(z,x)∧S j(z,y).

The order on the nodes we define now is depth-first left-to-right tree traversal, also

known as preorder. A node x is smaller than y according to this order if x dominates y

or x is to be found in a subtree to the left of the subtree where y is to be found. Formally,

x < y is defined as

dom(x,y)∨∃z,w : LSib(z,w)∧ (z = x∨dom(z,x))∧ (w = y∨dom(w,y)).

It is simple to define an immediate successor y of a node x according to the order

by setting

Succ(x,y) := x < y∧¬∃z : x < z < y.

The definition of a minimum and maximum of the order are even simpler. This example

shows that trees are ordered structures in the logics FO(DTC) and FO(TC).

The following part presents the main insight we want to convey, namely that tran-

sitive closure logics are more powerful than MSO on finite trees. The results to follow

are known to be true for string languages. But our emphasis lies on trees as the data

structures underlying model theoretic syntax. The next theorem is an extension to the

one given in [28].

Theorem 3 Every regular tree language is definable in FO(DTC).

Proof This result goes back to results by Mehlhorn [18] and Lynch [17], who in-

dependently showed that parentheses languages are LOGSPACE-recognizable. Their

algorithms extend immediately to regular tree languages. And on ordered structures

LOGSPACE and FO(DTC) define the same classes of structures [10]. �
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Figure 1: Trees with crossed dependencies as defined by Formula 1.

A fortiori, every regular tree language is definable in FO(TC). We are here inter-

ested in the observation that there are non-regular tree languages that can be defined

using FO(TC). Again, we present a strengthening of that statement.

Proposition 4 There exists a non-regular tree language that is FO(DTC2)-definable.

This proposition can be derived from known results on string languages. It is easy

to see that the non-regular string language {anbn | n ∈ N} is definable in FO(DTC2).

But in the spirit of model theoretic syntax we would like to present another proof,

which exemplifies which types of non-regular tree structures can be defined using

FO(DTC2).

Proof We consider labelled binary trees. We will stepwise construct a formula which

defines the tree language sketched in Figure 1. There are two successor relations S1,S2.

We have the following labels: f ,a,b where a and b are labels of leaves and f is the

label of internal nodes. There is a constant, r, for the root node of a tree. Now consider

the following predicate P:

[DTC(y1,y3),(y2,y4) S2(y1,y2)∧S2(y3,y4)]

which states that y2 is at the same distance from y1 on a right branch as y4 from y3. Let

Lea f (x) denote that x is a leaf, i.e.,

Lea f (x) := ¬∃yS1(x,y)∨S2(x,y).
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For perspicuity, let â(x) be a(x)∧Lea f (x) and let b̂(x) be b(x)∧Lea f (x). Let ϕ(x1,x2)
be the formula

∀y1,y2,y3,y4 P(x1,x2,y1,y2) →

((â(y1)∧ b̂(y2)) ∨

(S1(y1,y3)∧S1(y2,y4)∧ f (y1)∧ f (y2)∧ â(y3)∧ b̂(y4))).

Then

∃x1,x2 ( f (r)∧S1(r,x1)∧S2(r,x2) ∧

((â(x1)∧ b̂(x2)) ∨

( f (x1)∧ f (x2)∧∃y1,y2 (S1(x1,y1)∧S1(x2,y2)∧ â(y1)∧ b̂(y2)) ∧
ϕ(x1,x2))))

(1)

defines the trees that are isomorphic to derivation trees for the context-free string lan-

guage {anbn | n ≥ 1} with crossed dependencies, which is not a regular tree language.

Apart from the trivial trees f (a,b), f ( f (a,a), f (b,b)) trees have the shape depicted in

Figure 1.

The two subtrees below the root node are isomorphic. This fact cannot be expressed

by any MSO formula, a fact that follows from the pumping lemma for regular tree

languages. �

The following corollary can be obtained from this result.

Corollary 5 The expressive power of FO(DTC) as a language to define classes of

ordered trees is strictly higher than that of MSO.

The proof of Theorem 3 is based on the fact that every regular tree language is

LOGSPACE-recognizable. Indeed a stronger result is known. Lohrey [16] showed that

regular tree languages are even ALogTime-recognizable. One may now ask whether

all ALogTime-recognizable tree languages are regular or whether there are ALogTime-

recognizable tree languages which are not regular. The latter is indeed the case. There

are actually quite simple non-regular tree languages which are ALogTime-recognizable.

An example is a variant of the tree language in the proof above. In this example we take

the algebraic view on trees and consider the following signature Σ = ({ f ,g,a},{( f ,2),
(g,1),(a,0)}) where f is binary, g unary, and a a constant. The tree language { f (gn(a),
gn(a)) | n ≥ 1} is clearly not regular. But it is ALogTime-recognizable.

For a given finite signature Σ = (S,ρ) the formula

idlab(x,y) :=
_

f∈S

f (x)∧ f (y)

expresses that x and y carry the same label. We will use this formula to show that

subtree isomorphism is definable in FO(TC).

Proposition 6 Let Σ be a finite signature with maximal arity r. The subtree isomor-

phism relation Iso(x,y), which holds of two nodes x and y if the subtrees rooted in x

and y are isomorphic, is FO(DTC2) definable.
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Proof Let P be the predicate

[DTC(x3,x4)(x1,x2)

r
_

i=1

Si(x1,x3)∧Si(x2,x4)]

which states that the path from x1 to x3 is isomorphic to the path from x2 to x4 (not

considering labels). Then

Iso(x,y) = ∀z∃w(dom(x,z) → P(z,w,x,y)∧ idlab(z,w))
∧∀z∃w(dom(y,z) → P(w,z,x,y)∧ idlab(w,z))

states the usual back and forth conditions of isomorphism. �

This is another example of a relation that is not MSO-definable, as was shown in

[22]. Its definability in FO(DTC) has the following consequence.

Proposition 7 The logic FO(DTC2) is undecidable on finite ordered trees.

Actually, it is known that FO(DTC2) is undecidable even on strings. Every string

language recognizable by a deterministic two-way two-head automaton is FO(DTC2)-

definable, as shown in [1]. And the emptyness problem for deterministic two-way

two-head automata is undecidable [24].

The following proof shows that Proposition 7 follows from Proposition 6. We

present it as an example demonstrating the expressive power of FO(DTC2) over trees.

Proof The proof is based on Rogers’ [22, p. 48ff] proof of the undefinability of sub-

tree isomorphism in MSO. For any set D of tiles, the origin-constrained tiling problem

is definable in FO where the tiles of D are unary predicates, as shown by Rogers.

Therefore the FO theory of grids is undecidable. Rogers furthermore proves that the

theory of finite grids can be encoded in the theory of finite trees provided there is

a predicate available expressing subtree isomorphism. The grid is basically encoded

by demanding that each pair of paths that end in the same node on the grid have

to end in isomorphic nodes in the tree. Since subtree isomorphism is definable in

FO(DTC2) and origin-constrained tiling problems are definable in FO(DTC2), it fol-

lows that FO(DTC2) is undecidable over finite ordered trees. �

The proposition implies that both FO(DTC) and FO(TC) are undecidable on finite

ordered trees.

Monadic Transitive Closure Logics

All of the above results use (deterministic) transitive closures of tuples of width at

least 2. If we restrict the transitive closure operators to be applied to binary relations

only (denoted as FO((D)TC1) and called monadic transitive closure logic), the situation

changes. It is an old result that goes back at least to Moschovakis [19] that the transitive

closure of every MSO-definable binary relation is also MSO-definable. Let R be an

MSO-definable binary relation. Then

∀X(∀z,w(z ∈ X ∧R(z,w) =⇒ w ∈ X)∧∀z(R(x,z) =⇒ z ∈ X)) =⇒ y ∈ X
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is a formula with free variables x and y that defines the transitive closure of R (see [4]

for details). It follows that every tree language definable in FO(TC1) can be defined in

MSO. The same is true for string languages. But we observe an interesting difference

in expressive power between string languages and tree languages when we ask whether

every MSO definable language is also FO(TC1) definable. On the one hand, Bargury

and Makowsky [1] showed that MSO and monadic transitive closure logic are equally

expressive on string languages. It should be noted that this result follows immediately

from Kleene’s theorem on regular languages [12], since regular expressions are prac-

tically a special kind of FO(TC1) formulae. Translations from finite word automata to

more restricted fragments of FO(TC1), thus yielding a stronger normal form, can be

found in [20]. On the other hand, ten Cate and Segoufin [26] recently demonstrated the

existence of MSO definable tree languages that can not be defined in FO(TC1).

It is clear that FO(DTC1) extends the expressive power of FO, because it is capable

of expressing some second-order properties. This is of interest for model theoretic

syntax, because it is possible to define over arbitrary structures the classes of trees and

finite trees in FO(DTC1), as was shown by Kepser [11]. The defining formulae are

derived from the ones given by Rogers [22], but it is shown that the MSO-formulae can

be translated into the weaker logic FO(DTC1).

4 A TC Logic Account of Cross-Serial Dependencies

An important motivation for this paper is to propose a logic for the logical description

of natural language providing a direct definition of derivation trees. The aim of this

section is to show that MSO is insufficient for this task while transitive closure log-

ics suffice. The underlying reason is that there are natural languages the sentences of

which cannot be described by context-free (string) languages. The discussion about

the status of natural language started very early after the definition of the Chomsky

hierarchy. But many early arguments in favour of the non-contextfreeness of natural

languages were simply incorrect (see [21]). Finally, Huybregts [9] provided data for

Swiss German and Dutch that show that neither of these languages can be context-free.

Shortly after Shieber [25] independently provided the same data for Swiss German.

These data exhibit cross-serial dependencies in the verbal complex. Consider the fol-

lowing example:

wil de Karl d’Maria em Peter de Hans laat hälffe lärne schwüme

because Charles Mary1 Peter2 John3 lets1 help-inf2 teach-inf3 swim-inf

‘because Charles lets Mary help Peter to teach John to swim’

The main observations here are the following: Swiss German has overt case marking

for Dative and Accusative case. Verbs like laat and lärne take their objects in Ac-

cusative case, verbs like hälffe take their objects in dative case. When we consider the

sequence of objects and the sequence of verbs to which they belong, we observe the

following pattern of cross-serial dependencies:

NP1 NP2 NP3 V1 V2 V3

It appears that there are no limits on the length of such constructions in grammatical

sentences of Swiss German.
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In order to show that Swiss German in toto, and not just the above fragment, is not

context-free Shieber argues as follows. Firstly, there are subordinate clauses where all

Vs follow all NPs. Secondly, sentences where all dative NPs precede all accusative

NPs and all verbs subcategorizing for dative NPs precede all verbs subcategorizing for

Accusative NPs are grammatical. Thirdly, the number of verbs and their corresponding

objects must agree. And lastly, an arbitrary number of verbs can occur in such clauses.

The argument is now completed using the well-known fact that context-free languages

are closed under intersection with regular languages. Shieber defines the following

regular language:

Karl säit das mer (d’chind)∗ (em Hans)∗ es huus händ wele (laa)∗ (hälfe)∗ aastriiche.

Charles said that we (the children)∗ (John)∗ the house wanted to (let)∗ (help)∗ paint.

Intersecting Swiss German with this regular language results in the following language:

Karl säit das mer (d’chind)n (em Hans)m es huus händ wele (laa)n (hälfe)m aastriiche.

which is known not to be context-free.

We will now provide an FO(DTC) formula defining a tree language with anbmcndm

as yield language using a method similar to the one in Proposition 4. Labels of leaf

nodes are a,b,c,d, binary internal nodes are labelled with f , the root node has four

children and is labelled with rt. Again consider the predicate P:

[DTC(y1,y3),(y2,y4) S2(y1,y2)∧S2(y3,y4)]

which still states that y2 is at the same distance from y1 on a right branch as y4 from

y3. For simplicity, we use î(x) for i(x)∧Lea f (x) where i ∈ {a,b,c,d}. Let ϕ1(x1,x2)
be the formula

∀y1,y2,y3,y4 P(x1,x2,y1,y2) →
((â(y1)∧ ĉ(y2)) ∨
(S1(y1,y3)∧S1(y2,y4)∧ f (y1)∧ f (y2)∧ â(y3)∧ ĉ(y4))).

Let ϕ2(x1,x2) be the result of replacing label a by b and c by d in formula ϕ1(x1,x2),
i.e.,

∀y1,y2,y3,y4 P(x1,x2,y1,y2) →

((b̂(y1)∧ d̂(y2)) ∨

(S1(y1,y3)∧S1(y2,y4)∧ f (y1)∧ f (y2)∧ b̂(y3)∧ d̂(y4))).

Then

∃x1,x2,x3,x4 rt(r)∧S1(r,x1)∧S2(r,x2)∧S3(r,x3)∧S4(r,x4) ∧
f (x1)∧ f (x2)∧ f (x3)∧ f (x4) ∧
∃y1,y2,y3,y4 S1(x1,y1)∧S1(x2,y2)∧S1(x3,y3)∧S1(x4,y4) ∧

â(y1)∧ b̂(y2)∧ ĉ(y3)∧ d̂(y4) ∧
ϕ1(x1,x3)∧ϕ2(x2,x4)

(2)
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Figure 2: Shapes of trees defined by Formula 2.

defines a tree language with yield language {anbmcndm | n,m > 1}.1 The shape of the

trees is sketched in Figure 2. It should be noted that this form of analysis of cross-serial

dependencies is supported by findings in the linguistic literature (see, e.g.,[2]).

There exists another view onto this problem. If one only considers the pattern of

cross-serial dependency NP1 NP2 NP3 . . . V1 V2 V3 . . . then the resulting string

language {NPn Vn} is obviously context-free and abstracts from the inherent depen-

dencies. The derivation trees on the other hand should certainly capture these depen-

dencies. That this can be done in FO(DTC) was already shown in the previous section.

Please reconsider Formula 1 and the corresponding Figure 1. By a closer look onto

them it is simple to see that Formula 1 exactly defines the type of cross-serial depen-

dencies we discuss in the present section.

There are two issues we would like to point out here. Firstly, it is sufficient to

use the deterministic transitive closure of relations on pairs. This logic can be seen as

a minimal extension over MSO. Secondly, the logic does not just define the desired

string language. Rather it captures the notion of a cross-serial dependency in a direct

fashion in the derivation trees.

5 Conclusion

We have given some indications that FO(TC) and FO(DTC) are useful formalisms

for model theoretic syntax. We showed that the classes of tree languages that can be

1The lack of definitions for trees with yield language abcd, a2bc2d, and ab2cd2 is immaterial to the point

we make here. Adding these definitions would be trivial, but make formulas only harder to read.

11



defined by both languages properly extend the classes of tree languages that can be

defined with MSO. We also provided an indication that the known non-contextfree

phenomena in natural languages can be rendered using FO(TC) or even FO(DTC).

There are some interesting open problems regarding the relationship between MSO

and FO(TC), particularly whether MSO is strictly weaker than FO(TC2). In fact, it is

possible that MSO is incomparable to FO(TCk) for each k > 1.

From a perspective of model-theoretic syntax there is an interesting tension to be

observed here. The use of transitive closure logics for the description of derivation

trees that we advocate here has the advantage of being capable to express properties of

derivation trees in a direct fashion. The price to be paid for this advantage seems to

be the undecidability of the logics. As stated in the introduction, there are competing

extension to MSO for model-theoretic syntax. They frequently lack the capability of

expressing derivation tree properties in a direct way and encode them rather indirect.

As a “compensation” for this disadvantage, at least the approach described in [13] re-

mains decidable over finite trees. It seems that linguists have to make a choice of which

property they regard as more important: direct perspicuous encoding or decidability.
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