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1 Introduction

Multidominance structures were introduced by Kracht [4] to provide a data struc-
ture for the formalisation of various aspects of GB-Theory. Kracht studied the
PDL-theory of MDSes and showed that this theory is decidable in [5], actually
2EXPTIME-complete. He continues to conjecture that thus the MSO-theory of
MDSes should be decidable, too. We show here the contrary. Actually, both the
MSO-theory over vertices only and the MSO-theory over vertices and edges turn
out to be undecidable.

2 Preliminaries

Graphs

All graphs and structures discussed in this paper are finite.
An undirected graph is a pairG = (VG, EG) where VG is a finite set of vertices

and EG is a set of edges, a subset of VG × VG. In the graphs (and multi graphs)
we consider there is never an edge from any vertex to itself.

A graph signature Σ is a finite set of symbols together with an arity. In this
paper we do not consider hypergraphs. Consequently, all symbols have arity 0
for vertex labels or 2 for edge labels. Thus we split Σ into Σ0 and Σ2. Edge
labels are sometimes also called colours. For the purpose of this paper we are
mainly interested in the structure of graphs. We thus assume that Σ0 consists
of a single blank symbol, which is suppressed in the following.

A multi graph of signature Σ is a quaduple G = (VG, EG, sig, inc) where
VG is a finite set of vertices, EG is a finite set of directed edges, sig : VG →
Σ0 ∪EG → Σ2 a function assigning each vertex a label and each edge a colour,
and inc : EG → VG × VG a function assigning each edge its starting and ending
vertices.

Note that there may be more than one edge between two vertices of a multi
graph. A multi graph is simple, iff each pair of vertices is connected by at most
one edge. Paths in a multi graph are uncoloured but directed. A multi graph is
acyclic iff no path connets a vertex with itself. A multi graph is rooted iff there
is a vertex r such that (i) there is no vertex v and edge e with inc(e, v, r) and
(ii) every vertex is reachable from r.



The underlying undirected graph Gu of a multi graph G = (VG, EG, sig, inc)
is Gu = (VG, Eu) where (v, w) ∈ Eu iff there is some e ∈ EG with inc(e, v, w) or
inc(e, w, v). That is we forget about the direction of edges and multiple edges
between two vertices are reduced to one.

The complete graph Kk is an undirected graph G = (V,E) where V =
{1, . . . , k} and for all 1 ≤ i, j,≤ k holds (i, j) ∈ E iff i 6= j, i.e., there is an
edge between each pair of different vertices. Figure 1 shows the complete graphs
K3,K4,K5.
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Fig. 1. The complete graphs K3, K4, and K5.

Tree width is a notion introduced by Robertson and Seymour [6] to measure
how similar to a tree a graph is. It assigns each graph a natural number, where
smaller means closer to a tree. The number can be interpreted as the maximal
number of independent paths between any two vertices. The following formal
definition works independently of whether a graph is directed or not.

Definition 1. A tree decomposition of a multi graph G = (V,E, sig, inc) is a
pair (T,S), where T is an unordered tree and S is a family of sets indexed by the
vertices of T such that

1.
⋃

Xt∈S
Xt = V .

2. For all e ∈ E there is a unique Xt ∈ S such that if inc(e, v, w) then v, w ∈ Xt.
3. For all v ∈ V the subgraph of T induced by {t | v ∈ Xt} is connected.

The width of such a decomposition is maxXt∈S |{v | v ∈ Xt}|−1, i.e., the largest
number of vertices in a single set of the decomposition minus 1.
A graph G is of tree width k if and only if the smallest width of a tree decom-
position of G is k.

We will make use of the following two simple observations known from graph
theory.

Lemma 1. 1. The complete graph Kk has tree width k − 1.
2. Let G = (V,E, sig, inc) be a multi graph of tree width k. Then its underlying
undirected graph Gu has the same tree width k.

The following notion of a graph minor was also introduced and extensively
studied by Robertson and Seymour.



Definition 2. A graph G is a minor of H = (V,E, sig, inc) if it is the result of
applying a finite sequence of the following three operations.

– Edge deletion
If e is an edge, then this operation removes e from the graph.

– Vertex deletion
If v is an unconnected vertex, then this operation removes v from the graph.

– Edge contraction
Let e be an edge and inc(e, v, w). Then edge e and vertex w are removed
from the graph and each occurrence of w in inc is replaced by v. In effect,
vertices v and w are fused.

The tree width of a graph minor provides a lower bound for the tree width
of a graph.

Lemma 2. ([1], Lemma 16) If G is a minor of H, then tree width(G) ≤ tree
width(H).

Monadic second-order logic of graphs

When talking about monadic second-order theories of graphs one distinguishes
whether quantification is restricted to vertices or quantification is applicable to
vertices and edges. The first theory is usually denoted MS1, the second MS2. It
is known that definability of and decidability over certain classes of finite graphs
vary depending on whether MS1 or MS2 is considered.

The MS1-theory has vertex variables only, there are individual and set vari-
ables. For each vertex label L ∈ Σ0 and individual variable x there is an atomic
formala L(x). For each edge colour C ∈ Σ2 and pair of individual variables
x, y there is an atomic formula C(x, y). Furthermore equality and set member-
ship are atomic. Complex formulae are constructed by boolean connectives and
first-order and set existential and universal quantification.

More precisely let X0 = {x0, x1, x2, . . . } be a denumerably infinite set of first-
order vertex variables and X1 = {X0, X1, X2, . . . } be a denumerably infinite set
of vertex set variables. Atomic formulae are

– L(x) for each vertex label L ∈ Σ0,
– C(x, y) for each edge colour C ∈ Σ2,
– x = y,
– x ∈ X ,
– X = Y .

Complex formulae are created by boolean operations and quantification: (let
φ and ψ be formulae)

– ¬φ, φ ∧ ψ, φ ∨ ψ,
– ∀xφ, ∃xφ,
– ∀Xφ, ∃Xφ.



The sematics is the usual one.

The MS2-theory has two sorts of variables, namely vertex variables and edge
variables. For both sorts there are individual and set variables. For each vertex
label L ∈ Σ0 and individual vertex variable x there is an atomic formala L(x).
For each edge colour C ∈ Σ2, individual edge variable e and pair of individual
vertex variables x, y there is an atomic formula incC(e, x, y). Furthermore equal-
ity and set membership for both sorts of variables are atomic. Complex formulae
are constructed by boolean connectives and first-order and set existential and
universal quantification for both sorts of variables.

Let V be the sort of vertices and E be the sort of edges. Let X0 =
{x0, x1, x2, . . . } be a denumerably infinite set of first-order variables of sort V

and X1 = {X0, X1, X2, . . . } be a denumerably infinite set of set variables of sort
V. Let E0 = {e0, e1, e2, . . . } be a denumerably infinite set of first-order variables
of sort E and E1 = {E0, E1, E2, . . . } be a denumerably infinite set of set variables
of sort E. The atomic formulae are

– L(x) for each vertex label L ∈ Σ0,
– incC(e, x, y) for each edge colour C ∈ Σ2,
– x = y,
– x ∈ X ,
– X = Y ,
– e0 = e1,
– e ∈ E,
– E0 = E1.

Quantification can now be applied to vertices and edges. More precisely the
complex formulae are constructed as follows (where φ and ψ are formulae):

– ¬φ, φ ∧ ψ, φ ∨ ψ,
– ∀xφ, ∃xφ,
– ∀Xφ, ∃Xφ,
– ∀eφ, ∃eφ,
– ∀Eφ, ∃Eφ.

The sematics is the usual one.

3 Multidominance Structures

We introduce multidominance structures in this section quoting the relevant
definitions from [5]. MDSes are structures which can be seen as being derived
from binary trees1. As binary trees, they are rooted directed graphs where each
vertex has either 0 or 2 immediate successors. The graph may not contain a loop.
In difference to trees, a vertex may have more than one immediate predecessor.
The set of immediate predecessors is linearly ordered.

1 We will later on see that they differ substantially from trees in important ways.



Technically – and we follow here the description by Kracht [5] – the symbol
≻ defines an immediate dominance relation, where x ≻ y is read as x dominates
y. Its inverse is denoted by ≺. Nodes are downward binary branching, they have
at most two children. The following text is a longer quote from [5].

To implement this we shall assume two relations, ≻0 and ≻1 each of which
is a partial function, and ≻ = ≻0 ∪ ≻1. We do not require the two relations to
be disjoint.

Recall the definition of the transitive closure R+ of a binary relation R ⊆
U ×U over a set U . It is the least set S containing R such that if (x, y) ∈ S and
(y, z) ∈ S then also (x, z) ∈ S. Recall that R is loop free if and only if R+ is
irreflexive. Also, R∗ := {(x, x) | x ∈ U} ∪ R+ is the reflexive, transitive closure
of R.

Definition 3. A preMDS is a structure 〈M,≻0,≻1〉, where the following holds
(with ≻=≻0 ∪ ≻1):

(P1) If y ≻0 x and y ≻0 x
′ then x = x′.

(P2) If y ≻1 x and y ≻1 x
′ then x = x′.

(P3) If y ≻1 x then there is a z such that y ≻0 z.

(P4) There is exactly one x such that for no y, y ≻ x (this element is called the
root).

(P5) ≺+ is irreflexive.

(P6) The set M(x) := {y : x ≺ y} is linearly ordered by ≺+.

We call a pair 〈x, y〉 such that x ≺ y a link. We shall also write x; y to say that
〈x, y〉 is a link. An MDS is shown in Figure 2. The lines denote the immediate
daughter links. For example, there is a link from a upward to c. Hence we have
a ≺ c, or, equivalently, c ≻ a. We also have b ≺ a. We use the standard practice
of making the order of the daughters implicit: the leftward link is to the daughter
number 0. This means that a ≺0 c and b ≺1 c. Similarly, it is seen that b ≺1 d

and b ≺1 h, while c ≺0 d and g ≺0 h. It follows that M(a) = {c}, while
M(b) = {c, d, h}. A link 〈x, y〉 such that y is minimal in M(x) is called a root
link. For example, 〈b, c〉 is a root link, since c ≺+ d and c ≺+ h. A link that is
not a root link is called derived. A leaf is a node without daughters.

For technical reasons we shall split ≺0 and ≺1 into two relations each. Put
x ≺00 y iff (= if and only if) x ≺0 y and y is minimal in M(x); and put x ≺01 y

iff x ≺0 y but y in not minimal in M(x). Alternatively, x ≺00 y if x ≺0 y and
〈x, y〉 is a root link. Let x ≺01 y iff x ≺0 y but not x ≺00 y. Then by definition
≺00 ∩ ≺01= ∅ and

≺0 = ≺00 ∪ ≺01

Similarly, we decompose ≺1 into

≺1 = ≺10 ∪ ≺11
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Fig. 2. An MDS (from [5]).

where x ≺10 y iff x ≺1 y and y is minimal in M(x) (or, equivalently, 〈x, y〉 is
a root link). And x ≺11 y iff x ≺1 and y is not minimal in M(x). We shall define

≺•0 := ≺00 ∪ ≺10

≺•1 := ≺01 ∪ ≺11

We shall spell out the conditions on these four relations in place of just ≺0

and ≺1. The structures we get are called MDSs.

Definition 4. An MDS is a structure 〈M,≻00,≻01,≻10,≻11〉 which, in addi-
tion to (P1) – (P6) of Definition 3 satisfies

(P7) If y ∈ M(x) then x ≺•0 y iff x; y is a root link (iff y is the least element of
M(x) with respect to ≺+).

This ends the quote from [5]. We observe the following peculiarity. With
MDSes defined the way above it is possible that there are two nodes x and y

such that x ≻0 y and x ≻1 y, i.e., y is the left and right child of x. This is a
deliberate decision on Kracht’s side, and justified by the logic to describe MDSes
chosen by Kracht. But this decision causes technical problems to us that we will
mention later. Since there is hardly any linguistic justification for making a node
a left and right child simultanueously, we will also consider simple MDSes. These
are MDSes that are simple in the graph theoretic sense of the word.



4 MS1-Axiomatisation of MDSes

The axiomatisability of MDSes (and regular ones) in MS1 follows immediately
from the axiomatisation of MDSes in PDL that Kracht provides in [5] and the
well known fact that PDL formulae can be translated into equivalent MS1

formulae. But MS1 bing a powerful logic we can easily translate the defining
properties of MDSes directly into MS1.

(1) y ≻0 x ∧ y ≻0 x
′ =⇒ x = x′.

(2) y ≻1 x ∧ y ≻1 x
′ =⇒ x = x′.

(3) y ≻1 x =⇒ ∃z y ≻0 z.
(4) ∃x (6 ∃y y ≻ x) ∧ (∀z (6 ∃y y ≻ z) =⇒ z = x).
(5) 6 ∃x x ≻+ x.
(6) ∃E (y ≻ x⇐⇒ y ∈ E) ∧ ∀z, z′ (z ∈ E ∧ z′ ∈ E) =⇒ (z ≻+ z′ ∨ z′ ≻+ z).
(7) ∃E (y ≻ x⇐⇒ y ∈ E)∧

∃y y ∈ E ∧ y ≻•0 x ∧ ∀z z ∈ E =⇒ (z = y ∨ z ≻+ y) ∧ ∀z z ∈ E ∧ z 6= y =⇒
z ≻•1 x,

(8) x ≻0 y ∧ x ≻1 z =⇒ y 6= z.

Remember that MS1 is capable of defining the transitive closure of an MS1-
definable binary relation. We skip this definition here (refering the reader to, e.g.,
[2]) and just use ≻+ as its abbreviation.

Finiteness of the MDSes is also MS1-defineable. We will not present this
fact in details. Rather we explain the method to be used. One can define a linear
order on all the vertices extending ≻. This order has to be discrete and has
to have a maximal element. One defines a successor relation on the order and
demands that the maximal element is in the set of elements reachable from the
minimal element, which is the root, via the transitive closure of the successor
relation.

5 Undecidability of the MS2-Theory of MDSes

For showing the undecidability of the MS2-theory of MDSes we use the following
strategy. We define a sequence (Gk)k∈N of MDSes such that each element in the
sequence contains its predecessor as a subgraph and each element Gi has the
complete graph Ki as a graph minor. This way we can show that the class of
MDSes has unbounded tree width. We then use a criterion by Seese [7] to deduce
that its MS2 theory is undecidable.

Definition 5. Recursively define a sequence (Gk)k>1 of MDSes as follows. De-
fine G2 = ({1.1, 2.1}, {(2.1, 1.1)}, ∅, ∅, ∅). For k > 2 set

– Vk = Vk−1 ∪ {k.i | i = 1 . . . k − 2},
– ≻00k

=≻00k−1
∪{(k.i, k.i+ 1) | i = 1 . . . k − 3} ∪ {(k.k − 2, k − 1.1),

– ≻01k
=≻01k−1

= ∅,
– ≻10k

=≻10k−1
= ∅,
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Fig. 3. The MDSes G2, G3 and G4

– ≻11k
=≻11k−1

∪{(k.i, i.1) | i = 1 . . . k − 2},
– Gk = (Vk,≻00k

,≻01k
,≻10k

,≻11k
).

The MDSes G2, G3 and G4 are depicted in Figure 3. The MDSes G5 and G6

– being rather large – are depicted in Appendix A. It is immediately obvious
that Gk−1 is a subgraph of Gk. We quickly check that Gk is indeed an MDS.

Lemma 3. For k > 1 each graph Gk is a simple MDS.

Proof. Conditions (P1), (P2), and (P4) (rootedness) are obviously true for all
Gk. None of the graphs contains a loop (P5). And simplicity (P8) is also observed.
The thing to be shown are conditions (P6) and (P7) stating that the set of
parents of each node is linearly ordered and that the lowest element in the order
is the only root link.

Observe that for each Gk all nodes are linearly ordered by ≻00k
and that

by definition of ≻00k
each node different from the root has a single root link. A

node (i.j) with j > 1 has a single parent, which is (i.j − 1). For i > 1 all nodes
(i.1) have set M(i.1) = {(l.1) | i+ 1 < l ≤ k} ∪ {(i+ 1, i− 1)}. For node (1.1),
M(1.1) = {(l.1) | i+ 1 ≤ l ≤ k}. ⊓⊔

Lemma 4. For k > 1 each MDS Gk contains the complete graph Kk as a minor.

Proof. For k = 2, 3 the complete graph Kk is the undirected version of Gk.
For k > 3 the lemma is shown by induction on k. The general method is to
contract all edges that connect vertices with the same main address.
For k = 4 contract 4.1 ≻004

4.2. As there is an edge from 4.1 to 1.1 and one each
from 4.2 to 3.1 and 2.1 the undirected graph after contraction is K4.

For k > 4 contract the set of edges {k.i ≻00k
k.i+ 1 | 1 ≤ i ≤ k − 3}. As a

result the set of vertices {k.i | 1 ≤ i ≤ k − 2} is fused to a single vertex k.
By induction hypothesis, the subgraph Gk−1 can be contracted to Kk−1. Now,
since there is an edge from k.i to i.1 for each 1 ≤ i ≤ k − 2 and an edge from



k.k − 2 to k − 1.1 (by definition of Gk), each vertex in Kk−1 is connected to
some vertex in {k.i | 1 ≤ i ≤ k− 2}. After fusing these into a single vertex k the
resulting graph is thus Kk. ⊓⊔

Theorem 1. The MS2-theory of the classes of MDSes and simple MDSes is
undecidable.

Proof. As a consequence of the above lemma and Lemma 2 the classes of MDSes
and simple MDSes have unbounded tree width.
Seese ([7], Theorem 8) showed that if a class of graphs has a decidable MS2-
theory, it has bounded tree width. ⊓⊔

6 Equivalence of MS1 and MS2 on MDSes

The aim of this section is to show that MS1 has the same expressive power
over MDSes as MS2. In other words, the option of edge set quantification does
not extend the expressive power of MSO on MDSes. To show this we use a
criterion by Courcelle. He showed in [3] that for uniformly k-sparse classes of
simple graphs the two logics MS1 and MS2 have the same expresive power. A
class of graphs is uniformly k-sparse if for some fixed k the number of edges of
each subgraph of a graph is at most k-times the number of vertices.

Definition 6. A finite multi graph G is k-sparse, if there is some natural num-
ber k such that Card(EG) ≤ k Card(VG). A finite multi graph G is uniformly
k-sparse if each subgraph of G is k-sparse. A class of finite multi graphs is uni-
formly k-sparse if there is some natural number k such that each multi graph of
the class is uniformly k-sparse.

On the base of the following little lemma it is easy to see that MDSes are
uniformly 2-sparse.

Lemma 5. Let G be a multi graph.
If the maximal in degree of G is d then G is uniformly d-sparse.
If the maximal out degree of G is d then G is uniformly d-sparse.

Proof. We can count edges by counting end points or starting points of edges.
I.e.

Card(EG) =
∑

v∈VG

indeg(v) =
∑

v∈VG

outdeg(v).

If the maximum in (out) degree is d the above equation can be approximated by

Card(EG) ≤ d Card(VG).

See also [3], Lemma 3.1. ⊓⊔

Corollary 1. The class of MDSes is uniformly 2-sparse.



Proof. MDSes share with binary trees the property of having a maximal out
degree of 2. ⊓⊔

Thus simple MDSes fulfil the criterion set out in [3].

Proposition 1. The logics MS1 and MS2 have the same expressive power over
the class of simple MDSes.

Proof. By Theorem 5.1 of [3], the same properties of multi graphs are expressible
by MS1 and MS2 formulae for the class of finite simple 2-sparse multi graphs.

⊓⊔

Corollary 2. The MS1-theory of the class of simple MDSes is undecidable.

Proof. Follows immediately from the above proposition and Theorem 1. ⊓⊔
The restriction to simple MDSes can be overcome on the basis of the following

observation. Since we have only four colours of edges, simplicity can be defined
in first-order logic. The following axiom does this.

∀x, y (x ≻00 y ∨ x ≻01 y) ⇐⇒ ¬(x ≻10 y ∨ x ≻11 y).

Theorem 2. The MS1-theory of the class of MDSes is undecidable.

Proof. Suppose the MS1-theory of the class of MDSes were decidable. Add the
above axiom of simplicity to gain a decision procedures for the MS1-theory over
simple MDSes. This contradicts Corollary 2. ⊓⊔

Theorem 3. The logics MS1 and MS2 have the same expressive power over
the class of MDSes.

Proof. Both theories have the same degree of undecidability. ⊓⊔

7 Conclusion

We showed that both the MS1-theory and the MS2-theory over MDSes are
undecidable – contrary to what Kracht conjectured. There was a good reason
for Kracht’s conjecture, namely MS1 is not much more powerful than PDL.
So, how can this result be interpreted. We’d like to propose the following view.
Courcelle showed that the property of being a minor is definable by an MSO-
definable transduction. But this property is not PDL-definable. It is not possible
to code grids in a direct way with MDSes, basically because any set of parents
is linearly ordered by dominance. But grids can be minors of MDSes.

There is the question whether we can find a natural restriction on MDSes
to bound their tree width to regain decidability of the MSO-theories. It is of
course possible to just demand this or enforce it by e.g., demanding MDSes
to be generable by context-free graph grammars. But these restrictions do not
seem to have a motivation different from bounding the tree width and thus seem
arbitrary. It would be much nicer if restrictions could be found that relate multi
dominance to restrictions for movement.
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