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Abstract The equivalence of leaf languages of tree adjoining grammars and monadic lin-
ear context-free grammars was shown about a decade ago. Thispaper presents a proof of
the strong equivalence of these grammar formalisms. Non-strict tree adjoining grammars
and monadic linear context-free grammars define the same class of tree languages. We also
present a logical characterisation of this tree language class showing that a tree language
is a member of this class iff it is the two-dimensional yield of an MSO-definable three-
dimensional tree language.

Keywords Tree adjoining grammar, monadic linear context-free tree grammar, monadic
second-order logic, model theoretic syntax

1 Introduction

Tree Adjoining Grammars (Joshi et al 1975; Joshi and Schabes1997) (TAGs) are a gram-
mar formalism introduced by Joshi to extend the expressive power of context-free string
grammars (alias local tree grammars) in a small and controlled way to render certain known
mildly context-sensitive phenomena in natural language. The basic operation in these gram-
mars, the adjunction operation, consists in replacing a node in a tree by a complete tree
drawn from a finite collection.

Context-free Tree Grammars (CFTGs, see (Gécseg and Steinby 1997) for an overview)
have been studied in informatics since the late 1960ies. They provide a very powerful mech-
anism of defining tree languages. Rules of a CFTG define how to replace non-terminal nodes
by complete trees.
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It has been observed quite early after the introduction of TAGs that the adjoining oper-
ation seems to be a special case of the more general deductionstep in a CFTG-derivation.
TAGs look like special cases of subclasses of CFTGs. This intuition was strengthened by
showing that the yield languages definable by TAGs are equivalent to the yield languages
definable by monadic linear non-deleting CFTGs, as was shownindependently by Mönnich
(1997) and Fujiyoshi and Kasai (2000). The question of the strong equivalence of the two
formalisms remained unanswered.

Rogers (1998, 2003) introduced a variant of TAGs called non-strict TAGs. Non-strict
TAGs generalise the definition of TAGs by releasing the conditions that the root node an
foot node of an elementary tree must bear equal labels and that the label of the node to be
replaced must be equal to the root node of the adjoined tree. The first proposal of such an
extension of TAGs was made by Lang (1994). The new variant of TAGs looks even more like
a subclass of CFTGs. And indeed, non-strict TAGs and monadiclinear CFTGs are strongly
equivalent. This is the main result of the present paper.

We would like to point out that there is a small technical issue connected with this result.
Call a treerankediff for every node the number of its children is a function of its label. It is
well known that CFTGs define ranked trees. TAGs on the other hand define unranked trees.
A tree generated by a TAG may have a leaf node and an internal node labelled with the same
label. Taking the definition of ranked trees strictly, this is not possible with CFTG generated
trees. Our view on this issue is a practical one: a function isnot just defined by its name,
rather by its name and arity. Hence a three-placeA can be distinguished from a constantA
by their difference in arity, though the function – or label –name is the same. For every
label, a TAG only introduces a finite set of arities. Hence we opt for extending the definition
of a ranked alphabet to be a function form labels to finite setsof natural numbers.

The equivalence result and a previous result by Rogers (2003) provide a new charac-
terisation of the class of tree languages definable by monadic linear CFTGs by means of
logics. A tree language is definable by a monadic linear CFTG if and only if it is the two-
dimensional yield of an MSO-definable three-dimensional tree language.

The paper is organised as follows. The next section introduces trees, context-free tree
grammars, tree-adjoining grammars, and three-dimensional trees. Section 3 introduces a
special type of CFTGs called footed CFTGs. These grammars can be seen as the CFTG-
counterpart of TAGs. Section 3 contains the equivalence of monadic linear CFTGs and
footed CFTGs. Section 4 shows that footed CFTGs are indeed the CFTG-counterpart of
TAGs providing the equivalence of both grammar types. The fifth section states the afore-
mentioned logical characterisation of the expressive power of monadic linear CFTGs.

2 Preliminaries

2.1 Trees

We consider labelled finite ordered ranked trees. A tree is ordered iff there is a linear order
on the daughters of each node. A tree is ranked iff the label ofa node implies the number of
daughter nodes.

A tree domain is a finite subset of the set of strings over natural numbers that is closed
under prefixes and left sisters. Formally, letN∗ denote the set of all finite sequences of
natural numbers including the empty sequence andN+ be the of all finite sequences of
natural numbers excluding the empty sequence. A setD ⊂fin N∗ is called atree domainiff
for all u,v∈ N∗ : uv∈ D ⇒ u∈ D (prefix closure) and for allu∈ N∗, i ∈ N : ui ∈ D ⇒∀ j <
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i : u j ∈ D (closure under left sisters). An element of a tree domain is an address of a node in
the tree. It is called aposition.

Let Σ be a set of labels. Atree is a pair(D,λ ) whereD is a tree domain andλ : D → Σ
is a tree labelling function. The set of all trees labelled with symbols fromΣ is denotedTΣ .
A tree languageL ⊆ TΣ is just a subset ofTΣ .

A setΣ of labels isrankediff there is a functionρ : Σ →℘fin(N) assigning each symbol
a finite set of arities. Ift = (D,λ ) is a tree of a ranked alphabetΣ then for each position
p∈ D : p(n−1) ∈ D, pm /∈ D for everym≥ n⇒ n∈ ρ(λ (p)). For a natural numbern the
setΣ n denotes the set of all labels of arityn, the setΣ 0 is the set of constants.

If X is a set (of symbols) disjoint fromΣ , thenTΣ (X) denotes the set of treesTΣ∪X

where all elements ofX are taken as constants. The elements ofX are understood to be
“variables”.

Let X = {x1,x2,x3, . . .} be a fixed denumerable set ofvariables. Let X0 = /0 and, for
k ≥ 1, Xk = {x1, . . . ,xk} ⊂ X. For k ≥ 0,m≥ 0, t ∈ TΣ (Xk), and t1, . . . , tk ∈ TΣ (Xm), we
denote byt[t1, . . . , tk] the result ofsubstituting ti for all occurrences ofxi in t. Note that
t[t1, . . . , tk] is in TΣ (Xm). Note also that fork = 0, t[t1, . . . , tk] = t.

2.2 Context-Free Tree Grammars

We start with the definition of a context-free tree grammar quoting (Engelfriet and Schmidt
1977).

Definition 1 A context-free tree grammaris a quadrupleG = (Σ ,F ,S,P) where
Σ is a finite ranked alphabet ofterminals,
F is a finite ranked alphabet ofnonterminalsor function symbols,

disjoint with Σ ,
S∈ F 0 is thestart symbol, and
P is a finite set of productions (or rules) of the form

F(x1, . . . ,xk) → τ , whereF ∈ F k andτ ∈ TΣ∪F (Xk).

We use the convention that fork = 0 an expression of the formF(τ1, . . . ,τk) stands for
F . In particular, forF ∈F 0, a rule is of the formF → τ with τ ∈TΣ∪F . We sometimes use
little superscripts to indicate the arity of a non-terminal, like in F3.
The terminuscontext-free tree grammaris abbreviated by CFTG.

For a context-free tree grammarG = (Σ ,F ,S,P) we now define the direct derivation
relation. Letn≥ 0 and letσ1,σ2 ∈ TΣ∪F (Xn). We defineσ1 ⇒

G
σ2 if and only if there is a

productionF(x1, . . . ,xk)→ τ , a treeη ∈ TΣ∪F (Xn+1) containingexactly oneoccurrence of
xn+1, and treesξ1, . . . ,ξk ∈ TΣ∪F (Xn) such that

σ1 = η [x1, . . . ,xn,F(ξ1, . . . ,ξk)]

and
σ2 = η [x1, . . . ,xn,τ [ξ1, . . . ,ξk]].

In other words,σ2 is obtained fromσ1 by replacing an occurrence of a subtreeF(ξ1, . . . ,ξk)
by the treeτ [ξ1, . . . ,ξk].

As usual,
∗
⇒
G

stands for the reflexive-transitive closure of⇒
G

. For a context-free tree

grammarG, we defineL(G) = {t ∈ TΣ | S
∗
⇒
G

t}. L(G) is called thetree languagegenerated
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by G. Two grammarsG andG′ areequivalent, if they generate the same tree language, i.e.,
L(G) = L(G′).

We define three subtypes of context-free tree grammars. A productionF(x1, . . . ,xk)→ τ
is called linear, iff each variablex1, . . . ,xk occurs at most once inτ . Linear productions
do not allow the copying of subtrees. A tree grammarG = (Σ ,F ,S,P) is called alinear
context-free tree grammar, if every rule inP is linear. All the CFTGs we consider in this
paper are linear.

Secondly, a ruleF(x1, . . . ,xk) → τ is non-deletingiff each variablex1, . . . ,xk occurs in
τ . A CFTG is non-deleting if each rule is non-deleting.

Thirdly, a CFTGG= (Σ ,F ,S,P) is monadiciff F k = /0 for everyk > 1. Non-terminals
can only be constants or of rank 1. Monadic linear context-free tree grammars are abbrevi-
ated MLCFTGs.

We note that there are different types of derivation modes defined for CFTGs in general.
These are (beyond the general one above) the inside-out and outside-in derivation modes. In
inside-out derivation mode, a non-terminal node can only beexpanded if the subtree below it
does not contain any other non-terminal. In outside-in derivation mode, a non-terminal node
can only be expanded if the path from the root to this nodes does not contain another non-
terminal node. In general, these different derivation modes generate different tree languages.
But for linear non-deleting CFTGs, all three different derivation modes generate the same
tree language for a given grammar, as was shown by Kepser and Mönnich (2006). Since we
only consider linear CFTGs in this paper, we just defined the general derivation mode.

Example 1Let G1 = ({g2,a,b,c,d,e},{S,A1},S,P) whereP consists of the three rules

S→ A(e)

A(x) → g

a g d

b x c

A(x) → g

a A d

g

b x c

G1 is monadic, linear, and non-deleting. The tree language generated byG1 is depicted in
Figure 1. As one can see, it isnot a regular tree language. Its yield language is the non-
context-free language{anbnecndn | n≥ 1}.

2.3 Tree Adjoining Grammars

We consider so-called non-strict Tree Adjoining Grammars.Non-strict TAGs were intro-
duced by Rogers (2003) as an extension of TAGs that reflects the fact that adjunction (or sub-
stitution) operations are fully controlled by obligatory and selective adjoining constraints.
There is hence no need to additionally demand the equality ofhead and foot node labels or
the equality of the labels of the replaced node with the head node of the adjoined tree.

Following Rogers (2003), a non-strict TAG is a pair(E, I) whereE is a finite set of
elementary trees in which each node is associated with
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{

g

n

a d

g

a g d

n

b c

g

b e c

∣

∣

∣

∣

∣

n≥ 1

}

,

Fig. 1 The tree language generated byG1.

– a label – drawn from some alphabet,
– a selective adjunction(SA) constraint – a subset of the set of names of the elementary

trees, and
– anobligatory adjunction(OA) constraint – Boolean valued

andI ⊂ E is a distinguished non-empty set of initial trees. Each elementary tree has a foot
node.

Formally letΛ be a set of linguistic labels andNa be a finite set of labels disjoint from
Λ (the set of names of trees). A tree is a pair(D,λ ) where

– D is a tree domain,
– λ : D → Λ ×℘(Na)×{true, false} a labelling function.

Hence a node is labelled by a triple consisting of a linguistic label, an SA constraint, and an
OA constraint. We denoteTΛ ,Na the set of all trees. Anelementarytree is a triple(D,λ , f )
where (D,λ ) is a tree andf ∈ D is a leaf node, thefoot node.

Definition 2 A non-strict TAG is a quintupleG = (Λ ,Na,E, I ,name) where

– Λ is a set of labels,
– Na is a finite set of tree names,
– E is a finite set of elementary trees,
– I ⊆ E is a finite set of initial trees, and
– name: E → Na is a bijection, the tree naming function.

An adjunction is the operation of replacing a noden with a non-empty SA constraint by
an elementary treet listed in the SA constraint. The daughters ofn become daughters of the
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foot node oft. A substitution is like an adjunction except thatn is a leaf and hence there are
no daughters to be moved to the foot node oft.

Formally, lett, t ′ be two trees andG a non-strict TAG. Thent ′ = (Dt′ ,λt′) is derived from
t = (Dt ,λt) in a single step (writtent ⇒

G
t ′) iff there is a positionp∈ Dt and an elementary

trees∈ E with foot nodefs such that

– λt(p) = (L,SA,OA) with L ∈ Λ , SA⊆ Na,OA∈ {true, false},
– Dt′ = {q∈ Dt | ∄v∈ N+ : q = pv}∪{pv | v∈ Ds}∪{p fsv | v∈ N+, pv∈ Dt},

– λt′(q) =







λt(q) if q∈ Dt and∄v∈ N∗ : q = pv,
λs(v) if v∈ Ds andq = pv,
λt(pv) if v∈ N+, pv∈ Dt ,q = p fsv.

We write t ′ = ad j(t, p,s) if t ′ is the result of adjoinings in t at positionp. As usual, ∗⇒
G

is

the reflexive-transitive closure of⇒
G

. Note that this definition also subsumes substitution. A

substitution is just an adjunction at a leaf node.
A tree is in the language of a given grammar, iff every OA constraint on the way is

fulfilled, i.e., no node of the tree is labelled withtrue as OA constraint.
SA and OA constraints only play a role in derivations, they should not appear as labels

of trees of the tree language generated by a TAG. Letπ1 be the first projection on a triple. It
can be extended in a natural way to apply to trees by setting

– Dπ1(t) = Dt , and for eachp∈ Dt ,
– λπ1(t)(p) = L if λt(p) = (L,SA,OA) for someSA⊆ Na,OA∈ {true, false}.

Now

L(G) =

{

π1(t)

∣

∣

∣

∣

∣

∃s∈ I such thats
∗
⇒
G

t,

∄p∈ Dt with λt(p) = (L,SA, true) for someL ∈ Λ ,SA⊆ Na

}

.

One of the differences between TAGs and CFTGs is that there isno such concept of
a non-terminal symbol or node in TAGs. The thing that comes closest is a node labelled
with an OA constraint set totrue. Such a node must be further expanded. The opposite is a
node with an empty SA constraint. Such a node is a terminal node, because it must not be
expanded. Nodes labelled with an OA constraint set tofalse but a non-empty SA constraint
may or may not be expanded. They can neither be regarded as terminal nor as non-terminal
nodes.

Example 2Let G2 = ({g,a,b,c,d,e},{1,2},E,{name−1(1)},name) whereE andnameare
as follows:

1 : g

a (g,{2}, false) d

b e c
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2 : g

a (g,{2}, false) d

b g c

To enhance readability we simplified node labels for all nodes that have an empty SA con-
straint. For these nodes we only present the linguistic label, the information( /0, false) is
omitted. The foot nodes are underlined. Note that this grammar is even a strict TA grammar.
Note also that it generates the same tree language as the MLCFTG from Example 1, i.e.,
L(G2) = L(G1).

2.4 Three-Dimensional Trees

We introduce the concept ofthree-dimensionaltrees to provide a logical characterisation
of the tree languages generable by a monadic linear CFTG. Multi-dimensional trees, their
logics, grammars and automata are thoroughly discussed by Rogers (2003). Here, we just
quote those technical definitions to provide our results. The reader who wishes to gain a
better understanding of the concepts and formalisms connected with multi-dimensional trees
is kindly referred to (Rogers 2003).

Formally, a three-dimensional tree domainT3 ⊂fin (N∗)∗ is a finite set of sequences
where each element of a sequence is itself a sequence of natural numbers such that for
all u,v ∈ (N∗)∗ if uv ∈ T3 thenu ∈ T3 (prefix closure) and for eachu ∈ (N∗)∗ the set
{v | v∈ N∗,uv∈ T3} is a tree domain in the sense of Subsection 2.1.

Let Σ be a set of labels. Athree-dimensional treeis a pair(T3,λ ) whereT3 is a three-
dimensional tree domain andλ : T3→ Σ is a (node) labelling function.

For a nodex ∈ T3 we define its immediate successors in three dimensions as follows.
x⊳3 y iff y = x·m for somem∈ N∗, i.e.,x is the longest proper prefix ofy. x⊳2 y iff x = u·m
andy = u·m j for someu∈ T3,m∈ N∗, j ∈ N, i.e.x andy are at the same 3rd dimensional
level, butx is the mother ofy in a tree at that level. Finally,x⊳1 y iff x = u ·m j andy =
u ·m( j + 1) for someu ∈ T3,m∈ N∗, j ∈ N, i.e. x andy are at the same 3rd dimensional
level andx is the immediate left sister ofy in a tree at that level.

We consider the weak monadic second-order logic over the relations⊳3,⊳2,⊳1. Expla-
nations about this logic and its relationship to T3 grammarsand automata can be found in
(Rogers 2003).

3 The Equivalence between MLCFTGs and Footed CFTGs

The equivalence between MLCFTGs and TAGs is proven by showing that both grammar
formalisms are equivalent to a third formalism, so-called footed CFTGs.

Definition 3 Let G = (Σ ,F ,S,P) be a linear CFTG. Fork > 0 a ruleF(x1, . . . ,xk) → t is
footediff there exists a positionp∈Dt such thatp has exactlyk daughters, for 0≤ i ≤ k−1 :
λ (pi) = xi+1, and no position different from{p0, . . . , p(k−1)} is labelled with a variable.
The nodep is called the foot node and the path from the root oft to p is called thespineof t.
A CFTGG is footediff every rule ofG expanding a symbol fromF k with k > 0 is footed.
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Footed CFTGs are apparently the counterpart of non-strict TAGs in the world of context-
free grammars. Before we show this, we present in this section that footed CFTGs are actu-
ally equivalent to MLCFTGs. This is done in several intermediate steps, which are sketched
in the following diagram.

MLCFTG

non-deleting MLCFTG spinal-formed CFTG

non-deleting collapse-free MLCFTG

footed CFTG

Each arrow indicates that a grammar of one type can be equivalently recasted as a gram-
mar of the target type. We first show how to convert a MLCFTG into an equivalent footed
CFTG in several steps. The start is the observation by Fujiyoshi that deletion rules do not
contribute to the expressive power of MLCFTGs.

Proposition 1 (Fujiyoshi 2005)For every monadic linear context-free tree grammar there
exists an equivalentnon-deletingmonadic linear context-free tree grammar.

But even in a non-deleting MLCFTG there may still be rules that delete nodes in a
derivation step. LetG = (Σ ,F ,S,P) be a non-deleting MLCFTG. A ruleA(x) → x in P is
called acollapsingrule. A collapsing rule actually deletes the non-terminal nodeA in a tree.
Iff a CFTG does not contain a collapsing rule, the grammar is called collapse-free. Note
that by definition footed CFTGs are collapse-free, because the tree on the righthand side
of a collapsing rule provides no position having daughters (cp. Def. 3). Note also that the
example MLCFTG in Ex. 1 is non-deleting and collapse-free. The next proposition shows
that collapsing rules can be eliminated from MLCFTGs.

Proposition 2 For every non-deleting MLCFTG there exists an equivalent non-deleting
collapse-freeMLCFTG.

The propostion can be proven by stepwise applying all collapsing rules to the right hand
sides (or rhs, for short) of the non-collapsing rules.

MLCFTGs are not necessarily footed CFTGs, even when they arenon-deleting and
collapse-free. The reason is the following. Every right-hand side of every rule of a non-
deleting MLCFTG has exactly one occurrence of the variablex. But this variable may have
sisters. I.e. there may be subtrees in the rhs which have the same mother asx. Such a rule
is apparently not footed. And its rhs can hardly be used as a base for an elementary tree in
a TAG. Fortunately, though, a non-deleting collapse-free MLCFTG can be transformed into
an equivalent footed CFTG. The resulting footed CFTG is usually not monadic any more.
But this does not constitute any problem when translating the footed CFTG into a TAG.

The main idea in the transformation is the following. LetB(x) → t be a non-footed
grammar rule containing the subtreeg(t1,x, t2). The undesirable sister subtreest1 andt2 are
replaced by variables yielding a new ruleB(x1,x2,x3)→ t ′ wheret ′ is the result of replacing
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the subtreeg(t1,x, t2) by g(x1,x2,x3). The new rule is footed, but now ternary, not monadic.
So is the non-terminalB. The original sister subtreest1 and t2 still have to be dealt with.
Suppose there is a grammar ruleD(x) → τ such thatτ contains a subtreeB(θ). In this rhs
we replaceB(θ) by B(t1,θ , t2). Now the non-terminalB is also ternary in the rhs, and the
modified grammar rule can be applied to it. And if we apply the modified grammar rule, the
treest1 andt2 are moved back to being sisters ofθ and daughters of the nodeg below which
they were originally found.

The technical proof is illustrated by an example following it.

Proposition 3 For every non-deleting collapse-free MLCFTG there exists an equivalent
footed CFTG.

Proof Let CFTGG = (Σ ,F ,S,P) be a non-deleting collapse-free MLCFTG. The transfor-
mation proceeds in two major steps. First step:
Let (A(x)→ τ)∈ P and f (t1, . . .tk) be a subtree ofτ such thatk > 1, f ∈ Σ k, t j = x for some
1≤ j ≤ k andti ∈TΣ∪F for i 6= j. For each 1≤ i ≤ k, i 6= j we introduce a new non-terminal
Ti /∈ F 0 of rank 0 and a new ruleTi → ti . RuleA(x) → τ is replaced byA(x) → τ ′ whereτ ′

is the result of replacing the subtreef (t1, . . .tk) by f (T1, . . . ,Tj−1,x,Tj+1, . . . ,Tk).
This step does not change the generated tree language nor thetype of the grammar. It is just
helpful in the formulation of the next step.

Second step:
Let CFTGG = (Σ ,F ,S,P) be a non-deleting collapse-free MLCFTG after Step 1.
Let (A(x) → τ) ∈ P and f (T1, . . .Tj−1,x,Tj+1, . . . ,Tk) be a subtree ofτ for somek and f ∈
Σ k.
Consider the rule setR= {A(x) → t} ⊆ P of rules withA(x) as their lhs. It can be divided
into two disjoint parts. LetR1 =

{A(x) → t | t contains a subtreeg(T1, . . .Tj−1,x,Tj+1, . . . ,Tn) for some j,n andg∈ Σ n}

andR2 = R\R1. None of the rules inR1 are footed, while all rules inR2 are. DefineR′
1 by































A′(x1, . . . ,xn) → t ′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A(x) → t) ∈ R1,
t contains a subtreeg(T1, . . .Tj−1,x,Tj+1, . . . ,Tn)

for some j,n andg∈ Σ n

A′ /∈ F is a new nonterminal of rankn
t ′ is the result of replacingg(T1, . . .Tj−1,x,Tj+1, . . . ,Tn)

in t by g(x1, . . . ,xn)































.

Note thatR′
1 consists of footed rules only. We also define a setW of rewrite rules as follows.

W1 =







A(x) → A′(T1, . . .Tj−1,x,Tj+1, . . . ,Tn)

∣

∣

∣

∣

∣

∣

(A(x)→ t) ∈ R1, t contains a subtree
g(T1, . . .Tj−1,x,Tj+1, . . . ,Tn)
for some j,n andg∈ Σ n







.

If R2 = /0 setW2 = /0. If R2 6= /0 setW2 = {A(x) → A(x)}. NowW = W1∪W2.
Let P1 = (P\R1)∪R′

1 be a set of grammar rules. We apply the rewrite rules inW to the
grammar rules inP1 to get the desired new grammarP′. Defineapp(W,B(x1, . . . ,xk)→ t) =

{

B(x1, . . . ,xk) → t ′
∣

∣

∣

∣

t ′ is the result of rewriting every occurrence ofA
in t by some rule fromW

}

.
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Different occurrences ofA in t can be rewritten by different rules fromW. Now,

P′ =
⋃

(B(x1,...,xk)→t)∈P1

app(W,B(x1, . . . ,xk) → t).

The new grammar isG′ = (Σ ,F ′,S,P′) whereF ′ ⊇ F contains all new nonterminals in-
troduced in the definition ofR′

1. Rule setP′ contains only footed rules for the lhsA(x) and
for all new lhs derived fromA(x) in the definition ofR′

1.

Claim 1: If S
∗
⇒
G

t for somet ∈ TΣ∪F then there is at ′ ∈ TΣ∪F ′ such thatS ∗
⇒
G′

t ′ andt

can be rewritten tot ′ via rules fromW.
Claim 1 is proven by induction on the length of the derivationof t.
For S

∗
⇒
G

S this is trivially true.

Let S
∗
⇒
G

t. Then there is as∈ TΣ∪F with S
∗
⇒
G

s⇒
G

t. Thus there is aσ ∈ TΣ∪F∪X1 and a

treeσ1 ∈ TΣ∪F and a rule(B(x) → ξ ) ∈ P such thats= σ [B[σ1]] andt = σ [ξ [σ1]].
We may assume that(B(x) → ξ ) ∈ R1, the other case being simpler.
We assumeξ contains a subtreeg(T1, . . . ,Tj−1,x,Tj+1, . . .Tk) for some j,k∈ N andg∈ Σ k.
HenceR′

1 contains a ruleB′(x1, . . . ,xk) → ξ ′ whereξ ′ is the result of replacing the subtree
g(T1, . . . ,Tj−1,x,Tj+1, . . .Tk) in ξ by g(x1, . . . ,xk). And W contains a rewrite ruleB(x) →
B′(T1, . . . ,Tj−1,x,Tj+1, . . .Tk).

By Ind.H., there is a trees′ ∈ TΣ∪F ′ with S
∗
⇒
G′

s′ ands can be rewritten tos′ via rules from

W.
Thus s′ = σ ′[B′[T1, . . . ,Tj−1,σ ′

1,Tj+1, . . .Tk]] where σ (resp. σ1) can be rewritten toσ ′

(resp.σ ′
1) via rules fromW.

Thus grammar ruleB′(x1, . . . ,xk)→ ξ ′ can be applied tos′ yieldingσ ′[ξ ′[T1, . . . ,Tj−1,σ ′
1,Tj+1, . . .Tk]] =

t ′ andt can be rewritten tot ′ via rules fromW.
Note that this implies thatL(G) ⊆ L(G′).

Claim 2: If S
∗
⇒
G′

t ′ for somet ′ ∈ TΣ∪F ′ then there is at ∈ TΣ∪F such thatS
∗
⇒
G

t andt

can be rewritten tot ′ via rules fromW.
Claim 2 is proven by induction on the length of the derivationof t ′.
For S

∗
⇒
G′

S this is trivially true.

Let S
∗
⇒
G′

t ′. Then there is ans′ ∈TΣ∪F ′ with S
∗
⇒
G′

s′ ⇒
G′

t ′. Thus there is aσ ′ ∈TΣ∪F ′∪Xk
and

treesσ ′
1, . . . ,σ ′

k ∈TΣ∪F ′ and a rule(B′(x1, . . . ,xk)→ ξ )∈P′ such thats′ = σ ′[B′[σ ′
1, . . . ,σ ′

k]]
andt ′ = σ ′[ξ [σ ′

1, . . . ,σ ′
k]].

We assume the grammar ruleB′(x1, . . . ,xk) → ξ to be the result of transforming a unary
non-footed rule. Thus there exists aj ∈ N and ag∈ Σ k and a grammar rule(B(x) → ξ ′) ∈
P such thatξ ′ contains a subtreeg(T1, . . . ,Tj−1,x,Tj+1, . . .Tk) (for suitable non-terminals
T1, . . . ,Tj−1,Tj+1, . . .Tk of arity 0) andξ is the result of first replacing this subtree by
g(x1, . . . ,xk) and then applying some rewrite rules fromW. And W contains a rewrite rule
B(x) → B′(T1, . . . ,Tj−1,x,Tj+1, . . .Tk).
This implies thatσ ′

l = Tl for 1≤ l ≤ k, l 6= j.

By Ind.H., there is a trees∈TΣ∪F with S
∗
⇒
G

sandscan be rewritten tos′ by rules fromW.

Thuss = σ [B[σ j ] whereσ (resp.σ j ) can be rewritten toσ ′ (resp.σ ′
j ) via rules fromW.

And grammar rule(B(x)→ ξ ′) ∈ P can be applied tosyielding σ [ξ ′[σ j ]] = t. Thatt can be
rewritten tot ′ follows from σ ′

l = Tl and the construction ofξ ′.
Note that this implies thatL(G′) ⊆ L(G).
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Claims 1 and 2 show thatL(G) = L(G′).
By repetition of Step 2, all non-footed rules can be replacedin P. ⊓⊔

Note that the finally resulting footed CFTG may have a lot morerules than the original
MLCFTG. We’d like to illuminate the construction by means ofan example.

Example 3We convert the non-deleting collapse-free MLCFTGG1 from Example 1 into
a footed CFTG. In Step 1, we replace subtrees which are sisters of variables by new non-
terminals. This step is not really useful inG1, but we show it anyway. The resulting grammar
rules are

S → A(e)
A(x) → g

A g D

B x C
A → a
B → b
C → c
D → d

A(x) → g

A A D

g

B x C

This grammar contains non-footed rules, the two rules that expandA(x). Hence we have to
apply Step 2.
Rule setR1 = {A(x) → g(A,g(B,x,C),D),A(x)→ g(A,A(g(B,x,C)),D)}.
Rule setR2 = /0 is empty.
Now R′

1 =
{A′(x1,x2,x3) → g(A,g(x1,x2,x3),D),A′(x1,x2,x3) → g(A,A(g(x1,x2,x3)),D)}.
And W = W1 = {A(x) → A′(B,x,C)}.

Applying W to (P\R1)∪R′
1 yields the new grammar

S → A′(B,e,C)
A′(x1,x2,x3) → g

A g D

x1 x2 x3

A → a
B → b
C → c
D → d

A′(x1,x2,x3) → g

A A′ D

B g C

x1 x2 x3

We call the resulting footed grammarG2.

Having shown by now that there is an equivalent footed CFTG for every MLCFTG we
will now turn to the inverse direction. This is also done via intermediate steps.
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The following definitions are quoted from (Fujiyoshi and Kasai 2000, p. 62). A ranked
alphabet ishead-pointing, iff it is a triple (Σ ,ρ ,h) such that(Σ ,ρ) is a ranked alphabet and
h is a function fromΣ to N such that, for eachA ∈ Σ , if ρ(A) ≥ 1 then 0≤ h(A) < ρ(A),
otherwiseh(A) = 0. The integerh(A) is called the head ofA.

Definition 4 Let G = (Σ ,F ,S,P) be a CFTG such thatF is a head-pointing ranked al-
phabet. Forn ≥ 1, a productionA(x1, . . . ,xn) → t in P is spinal-formediff it satisfies the
following conditions:

– There is exactly one leaf int that is labelled byxh(A). The path from the root to that leaf
is called the spine oft, or the spine whent is obvious.

– For a noded ∈ Dt , if d is on the spine andλ (d) = B∈ F with ρ(B) ≥ 1, thend ·h(B)
is a node on the spine.

– Every node labelled by a variable inXn \{xh(A)} is a child of a node on the spine.

A CFTGG = (Σ ,F ,S,P) is spinal-formediff every productionA(x1, . . . ,xn) → t in P with
n≥ 1 is spinal-formed.

The intuition behind this definition as well as illustratingexamples can be found in
(Fujiyoshi and Kasai 2000, p. 63). We will not quote them here, because spinal-formed
CFTGs are just an equivalent form of CFTGs on the way to showing that footed CFTGs can
be rendered by MLCFTGs.

Proposition 4 For every footed CFTG there exists an equivalent spinal-formed CFTG.

Note that a rule in footed CFTG fulfills the first and the third condition of a spinal-
formed rule already. What has to be shown is that the setF of non-terminals can be made
to be head-pointing. Since the rhs of a footed CFTG rule has a spine, the non-terminals on
the spine can be made head-pointing by following the spine. For all other non-terminals we
arbitrarily choose the first daughter to be the head daughter.

Proof Let G = (Σ ,F ,S,P) be a footed CFTG.
Define CFTGG′ = (Σ ,F ′,S,P′) as follows.
SetF1 = {(A,0) | A∈ F>0},
F2 = {(A,k) | A∈ F>0,∃t ∈ rhs(P), p∈ Dt : λt(p) = A, pk∈ spine(t)}, and
F ′ = F 0∪F1∪F2.

For every(A,k) ∈ F1∪F2 seth(A,k) = k (the head of(A,k)).
Define relab :rhs(P) → TF ′∪Σ∪X as follows.

D = Dt ,

for eachp∈ D :

λrelab(t)(p) =















(A,k) if λt(p) = A∈ F>0, pk∈ spine(t),
(A,0) if λt(p) = A∈ F>0, p /∈ spine(t),
A if λt(p) = A∈ F 0,
f if λt(p) = f ∈ Σ ∪X

relab(t) = (D,λrelab(t))
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For treest ∈ TF ′∪Σ∪X the inverse of relab can be defined by

D = Dt ,

for eachp∈ D :

λrelab−1(t)(p) =







A if λt(p) = (A,k) ∈ F1∪F2,
A if λt(p) = A∈ F 0,
f if λt(p) = f ∈ Σ ∪X

relab−1(t) = (D,λrelab−1(t))

Set

P′ = {(A,k)(x1, . . . ,xn) → relab(t) | ∃(A(x1, . . . ,xn) → t) ∈ P,(A,k) ∈ F
′} ∪

{A→ relab(t) | ∃(A→ t) ∈ P,A∈ F
0}.

GrammarG′ is spinal-formed, as a simple check reveals.
Claim 1: For every treet ∈ TΣ∪F : if S

∗
⇒
G

t then there exists a treet ′ ∈ TΣ∪F ′ with

S
∗
⇒
G′

t ′ andt = relab−1(t ′).

Proven by an induction on the length of the derivation oft.
For S

∗
⇒
G

S this is trivially true.

Let S
∗
⇒
G

t. Then there is as∈ TΣ∪F with S
∗
⇒
G

s⇒
G

t. Thus there is aσ ∈ TΣ∪F∪Xk
and

treesσ1, . . .σk ∈TΣ∪F and a rule(B(x1, . . .xk)→ ξ ) ∈ P such thats= σ [B[σ1, . . . ,σk]] and
t = σ [ξ [σ1, . . . ,σk]].
By Ind.H., there is a trees′ ∈ TΣ∪F ′ with S

∗
⇒
G′

s′ ands= relab−1(s′).

By definition of P′ there is a rule((B, l)(x1, . . .xk) → relab(ξ )) ∈ P′. And there is aσ ′ ∈
TΣ∪F ′∪Xk

with σ = relab−1(σ ′) and treesσ ′
1, . . .σ ′

k ∈ TΣ∪F ′ with σ j = relab−1(σ ′
j) such

thats′ = σ [(B, l)[σ ′
1, . . . ,σ ′

k]].
Therefores′ ⇒

G′
t ′ = σ ′[relab(ξ )[σ ′

1, . . . ,σ ′
k]] andt = relab−1(t).

The argument forB∈ F 0 is even simpler.
Claim 2: For evert treet ∈ TΣ∪F ′ : if S

∗
⇒
G′

t thenS
∗
⇒
G

relab−1(t).

Claim 2 can be proven by a simple induction on the length of thederivation oft. Claims 1
and 2 together show thatL(G) = L(G′). ⊓⊔

Proposition 5 (Fujiyoshi and Kasai 2000)For every spinal-formed CFTG there exists an
equivalent MLCFTG.

This is a corollary of Theorem 1 (p. 65) of (Fujiyoshi and Kasai 2000). The authors see this
fact themselves. They state on p. 65 immediately above Theorem 1:

“It follows from Theorem 1 that the class of tree languages generated by spine
grammars is the same as the class of tree languages generatedby linear nondeleting
monadic CFTGs, that is, CFTGs with nonterminals of rank 1 and0 only, and with
exactly one occurrence of x in every right-hand side of a production for a nontermi-
nal of rank 1.”

We are now done showing that MLCFTGs are equivalent to footedCFTGs.

Theorem 1 A tree language is definable by a monadic linear CFTG if and only if it is
definable by a footed CFTG.
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4 The Equivalence between Footed CFTGs and TAGs

The aim of this section is to show that footed CFTGs are indeedthe counterpart of non-strict
TAGs. The following proofs are technical, but the constructions are not really difficult. We
first translate footed CFTGs into non-strict TAGs. The basicidea is that every right-hand
side of every rule from the CFTG is an elementary tree. The newfoot node is the node that
is the mother of the variables in the rhs of a rule. Of course, the variables and the nodes
bearing them have to be removed from the elementary tree. To construct the TAG, every
rhs of the CFTG gets a name. Every non-terminal in a rhs receives an obligatory adjunction
constraint. The selection adjunction constraint it receives is the set of names of those rhs
that are the rhs of the rules that expand this non-terminal. The initial trees are the rhs of the
rules that expand the start symbol of the CFTG.

Proposition 6 For every footed CFTG there exists an equivalent non-strictTAG.

Proof Let CFTGG = (Σ ,F ,S,P) be a footed CFTG. LetNa be a set of labels such that
|Na| = |P|. Define a bijectionname: Na→ rhs(P) mapping names inNa to right hand side
of rules inP in some arbitrary way.

For a non-terminalA∈ F k we define the set

RhsA = {name(r) | (A(x1, . . . ,xk) → r) ∈ P}.

We define a function el-tree :rhs(P)→TΣ∪F ,Na by considering two cases. For(A(x1, . . . ,xk)→
t) ∈ P such thatf ∈ Dt with λt( f i) = xi+1 set

D = Dt \{ f i | 0≤ i ≤ k−1}

for eachp∈ D :

λ (p) =

{

(λt(p), /0, false) if λt(p) ∈ Σ ,
(B,RhsB, true) if λt(p) = B∈ F

el-tree(t) = (D,λ , f )

For (A→ t) ∈ P set

D = Dt

for eachp∈ D :

λ (p) =

{

(λt(p), /0, false) if λt(p) ∈ Σ ,
(B,RhsB, true) if λt(p) = B∈ F

f = 0k for k∈ N,0k ∈ D,0k+1 /∈ D

el-tree(t) = (D,λ , f )

We letG′ = (Σ ,Na,{el-tree(r) | r ∈ rhs(P)},{el-tree(S)},name) be the non-strict TAG
derived fromG. An example of the construction is given in Example 4, directly below this
proof.

For a given footed CFTGG and derived TAGG′ we can define a function tag-tree :
TΣ∪F →TΣ∪F ,Na from footed CFTG generated trees to TAG generated trees similar to the
function el-tree as follows. Fort = (Dt ,λt) ∈ TΣ∪F we set

D = Dt

for eachp∈ D :

λ (p) =

{

(λt(p), /0, false) if λt(p) ∈ Σ ,
(B,RhsB, true) if λt(p) = B∈ F

tag-tree(t) = (D,λ )
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The function tag-tree is partially the inverse ofπ1 (the projection onto the first element of a
tuple, defined in Def. 2 on p. 5), i.e.,π1(tag-tree(t)) = t for everyt ∈ TΣ∪F .

Claim 1: For every treet ∈ TΣ∪F : if S
∗
⇒
G

t then el-tree(S)
∗
⇒
G′

tag-tree(t).

Proven by induction on the length of the derivation oft.
For S

∗
⇒
G

S the claim is true by definition of el-tree(S).

Let t ∈ TΣ∪F andS
∗
⇒
G

t. By definition of
∗
⇒
G

there is a trees such thatS
∗
⇒
G

s⇒
G

t and a

positionp∈ Ds. We distinguish two cases.
Case 1:p is not a leaf node.
Then there is aB∈F k, σ ∈ TΣ∪F (X1),σ1, . . . ,σk ∈TΣ∪F , a rule(B(x1, . . . ,xk)→ ξ ) ∈ P
such thats= σ [B[σ1, . . . ,σk]], B[σ1, . . . ,σk] is the subtree at positionp, andt = σ [ξ [σ1, . . . ,σk]].
By Ind.H., el-tree(S)

∗
⇒
G′

tag-tree(s) andλtag-tree(s)(p) = (B,RhsB, true).

By definition of G′ there is an elementary tree el-tree(ξ ) with name(el-tree(ξ )) ∈ RhsB.
Therefore we can adjoint el-tree(ξ ) at positionp of tag-tree(s). By definition of adjoin,
the result of this adjoin operation is just tag-tree(σ [ξ [σ1, . . . ,σk]]) = tag-tree(t), and hence
el-tree(S)

∗
⇒
G′

tag-tree(t).

Case 2:p is a leaf node.
Then there is aB∈F 0, σ ∈ TΣ∪F , a rule(B→ ξ ) ∈ P such thats= σ [B], B is the subtree
at positionp, andt = σ [ξ ].
By Ind.H., el-tree(S)

∗
⇒
G′

tag-tree(s) andλtag-tree(s)(p) = (B,RhsB, true).

By definition of G′ there is an elementary tree el-tree(ξ ) with name(el-tree(ξ )) ∈ RhsB.
Therefore we can substitute(B,RhsB, true) with el-tree(ξ ) at positionp of tag-tree(s). By
definition of substitution as a special case of adjoin, the result of this substitution operation
is just tag-tree(σ [ξ ]) = tag-tree(t), and hence el-tree(S)

∗
⇒
G′

tag-tree(t).

Claim 2: For every treet ∈ TΣ∪F ,Na: if el-tree(S)
∗
⇒
G′

t thenS
∗
⇒
G

π1(t).

Proven by induction on the length of the derivation oft.
For el-tree(S)

∗
⇒
G′

el-tree(S) the claim is true by definition of el-tree(S).

Let t ∈TΣ∪F ,Na such that el-tree(S)
∗
⇒
G′

t. By definition of ∗
⇒
G′

there exists a trees∈TΣ∪F ,Na

such that el-tree(S)
∗
⇒
G′

s⇒
G′

t. We distinguish two cases.

Case 1: Steps⇒
G′

t is an adjunction step.

There is a positionp∈ Ds and an elementary treee∈ E with foot node fs. By definition of
G′ λs(p) = (B,RhsB, true) andname(e) ∈ RhsB.
Hence there is a rule(B(x1, . . . ,xk) → e′) ∈ P with e= el-tree(e′).
Henceπ1(s)⇒

G
π1(t) and there is aσ ∈TΣ∪F (X1),σ1, . . . ,σk∈TΣ∪F with π1(s) = σ [B[σ1, . . . ,σk]]

andπ1(t) = σ [e′[σ1, . . . ,σk]].
By Ind.H.,S

∗
⇒
G

π1(s). ThereforeS
∗
⇒
G

π1(t).

Case 2: Steps⇒
G′

t is a substitution step.

This case is similar to the adjunction step but simpler. Claims 1 and 2 together show that
L(G) = L(G′). ⊓⊔



16

Example 4To explain the construction in the proof above we transform the grammarG3 at
the end of Example 3. The names areNa= {1,2,3,4,5,6,7} with namedefined as

Na rhs
1 A(B,e,C)
2 g(A,g(x1,x2,x3),D)
3 g(A,A(B,g(x1,x2,x3),C),D)

Na rhs
4 a
5 b
6 c
7 d

We obtain the following elementary trees. (Again we simplify node labels of type(L, /0, false)
to justL. Foot nodes are underlined.)

1 : (A,{2,3}, true)

(B,{5}, true) e (C,{6}, true)

2 : g

(A,{4}, true) g (D,{7}, true)

3 : g

(A,{4}, true) (A,{2,3}, true) (D,{7}, true)

(B,{5}, true) g (C,{6}, true)

4: a
5: b

6: c
7: d

Tree 1 is the only initial tree.
If we substitute the substitution nodes 4 – 7 into the other elementary trees, the grammar

bears a remarkable similarity the the TA grammarG2 of Example 2. Tree 2 ofG2 corre-
sponds to tree 3, and tree 1 ofG2 to the result of adjoining tree 2 into 1.

We now show the inverse direction. The idea of the construction is to take the elementary
trees as right-hand sides of rules in a footed CFTG to be constructed. The non-terminals that
are expanded – and hence the left-hand sides of rules – are those nodes that have an SA
constraint that contains the name of the elementary tree under consideration. The arity of
the non-terminal is just the number of daughters of such a node.

Proposition 7 For every non-strict TAG there exists an equivalent footed CFTG.

Proof Let G = (Σ ,Na,E, I ,name) be a non-strict TAG.
Let S /∈ Σ be a new symbol (the new start symbol). Set

F
k = {(L,SA,v) | ∃t ∈ E∃p∈ Dt : λt(p) = (L,SA,v),v∈ {true, false},SA 6= /0,

p(k−1) ∈ Dt , pk /∈ Dt}.
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SetF = {S}∪
⋃

k≥0F k the set of non-terminals. For an elementary treet = (Dt ,λt , f )∈ E
we definerhs(t,k) by

D = Dt ∪{ f j | 0≤ j ≤ k−1}

for eachp∈ D :

λ (p) =















L if λt(p) = (L, /0, false),L ∈ Σ ,
(L,SA,v) if λt(p) = (L,SA,v),L ∈ Σ ,SA6= /0,

v∈ {true, false},
x j+1 if p = f j,0≤ j ≤ k−1

rhs(t,k) = (D,λ )

Note that fork = 0 the tree domainD = Dt . DefineP1 as

{(L,SA,v)(x1, . . . ,xk) → rhs(t,k) | (L,SA,v) ∈ F
k, t ∈ E : name(t) ∈ SA}

∪ {S→ rhs(i,0) | i ∈ I}

andP2 as

{(L,SA, false)(x1, . . . ,xk) → L(x1, . . . ,xk) |
∃t ∈ E∃p∈ t : λt(p) = (L,SA, false), p(k−1) ∈ Dt , pk /∈ Dt}.

The setP of productions isP1∪P2. Let G′ = (F ,Σ ,S,P) be a CFTG.
A simple check of the definition of the productions shows thatG′ is footed. Note that the
rules inP1 are used for the derivation proper while those inP2 serve the purpose of stripping
off the undesirable SA and OA constraint information coded in the non-terminals. The above
construction is illustrated by Example 5 following immediately after the technical part of the
proof.

Claim 1: For every treet ∈ TΣ ,Na: if i
∗
⇒
G

t with i ∈ I thenS
∗
⇒
G′

rhs(t,0).

Proven by an induction on the length of the derivation oft.
For i ∈ I , if i

∗
⇒
G

i then there is a rule(S→ rhs(i,0)) ∈ P by definition ofP. And hence

S
∗
⇒
G′

rhs(i,0).

If i
∗
⇒
G

t with i ∈ I then there is ans∈ TΣ ,Na, an e∈ E and a positionp ∈ Ds such that

i
∗
⇒
G

s⇒
G

t andt = ad j(s, p,e), λs(p) = (L,SA,v) with L∈ Σ ,name(e)∈ SA,v∈ {true, false}.

Let k = max{ j | p j ∈ Ds}+1.
By Ind,H,.,S

∗
⇒
G′

rhs(s,0).

Furthermore(L,SA,v)∈F k, λrhs(s,0)(p) = (L,SA,v), and((L,SA,v)(x1, . . . ,xk)→ rhs(e,k))∈
P by definition ofP. Hencerhs(s,0)⇒

G′
rhs(t,0).

Claim 2:L(G) ⊆ L(G′).
Let t ∈ L(G). Then there is at ′ ∈ TΣ ,Na and ani ∈ I such thati

∗
⇒
G

t ′ and t = π1(t ′) and

there is no positionp ∈ Dt′ whereλt′(p) = (L,SA, true) for someL ∈ Σ ,SA⊆ Na. Now,
rhs(t ′,0)

∗
⇒
G′

t using only rules fromP2 by definition of P2 and t ′. And S
∗
⇒
G′

rhs(t ′,0) by

Claim 1. HenceS
∗
⇒
G′

t andt ∈ L(G′).

Claim 3: For every treet ∈TΣ∪F : if S
∗
⇒
G′

t using only productions fromP1 then there is

a i ∈ I and at ′ ∈ TΣ ,Na such thati ∗
⇒
G

t ′ andt = rhs(t ′,0).

Claim 3 can also be proven by an induction on the length of the derivation oft.
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Claim 4:L(G′) ⊆ L(G).
Let t ∈ TΣ such thatt ∈ L(G′). ThenS

∗
⇒
G′

t. It is simple to see that there is a trees∈ TΣ∪F

such that there is a derivation sequenceS
∗
⇒
G′

s
∗
⇒
G′

t and every rule inS
∗
⇒
G′

s is in P1 while

every rule ins
∗
⇒
G′

t is in P2. By Claim 3, there is ani ∈ I and ans′ ∈ TΣ ,Na such thati ∗
⇒
G

s′

ands= rhs(s′,0). Since every rule ins ∗
⇒
G′

t is in P2, there is no positionp in s′ such that

λs′(p) = (L,SA, true) for someL ∈ Σ ,SA⊆ Na. Henceπ1(s′) ∈ L(G) by definition ofL(G).
But since every rule ins ∗

⇒
G′

t is in P2, it follows thatπ1(s′) = t by definition ofP2.

Claims 2 and 4 together show thatL(G) = L(G′). ⊓⊔
This completes the proof of the equivalence between footed CFTGs and non-strict TAGS.

Example 5To illustrate the construction of the proof we provide an example of transforming
a non-strict TAG into an equivalent footed CFTG. The input TAG isG2 from Example 2.
The set of non-terminals isF = {S,(g,{2}, false)3}.
Rule setP1 consists of two rules:

(g,{2}, false)(x1,x2,x3) → g

a (g,{2}, false) d

b g c

x1 x2 x3

S→ g

a (g,{2}, false) d

b e c

Rule setP2 consists of a single rule:

(g,{2}, false)(x1,x2,x3) → g(x1,x2,x3)

The footed grammar is given by({S,(g,{2}, false)},{g,a,b,c,d,e},S,P1∪P2).

The above results are accumulated in the following two theorems.

Theorem 2 A tree language is definable by a footed CFTG if and only if it isdefinable by a
non-strict TAG.

We can now present the main result of this paper. It is an immediate consequence of the
theorem above and Theorem 1.

Theorem 3 The class of tree languages definable by non-strict Tree Adjoining Grammars is
exactly the class of tree languages definable by monadic linear context-free tree grammars.
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5 A Logical Characterisation

The aim of this section is to show that the theorem above and results by Rogers (2003)
on TAGs can be combined to yield a logical characterisation of tree languages definable
by monadic linear CFTGs. A tree language is generable by a MLCFTG iff it is the two-
dimensional yield of an MSO-definable three-dimensional tree language.

We start by defining the two-dimensional yield of a three-dimensional tree. Let(T3,λ )
be a three-dimensional tree. A nodep∈ T3 is an internal node, iffp 6= ε (p is not the root)
and there is ap′ with p⊳3 p′ (p has an immediate successor in the 3rd dimension). For an
internal node we define a fold-in operation that replaces thenode by the subtree it roots.
Consider the setSof immediate successors ofp. By definition it is a two-dimensional tree
domain. We demand it to have a foot node, i.e., a distinguished node f ∈ S that has no
immediate successors in the second dimension. The operation replacesp by S.

Formally, lett = (T3,λ ) be a three-dimensional tree. We sayt is footed in the second
dimensioniff for every nodep the two-dimensional tree domain{p′ | p⊳3 p′} has a foot
node.
Let p∈T3 be an internal node. Hencep= p′m for somep′ ∈T3 (the immediate predecessor
of p) andm∈ N∗. Let p′m f ∈ T3 be the foot node of the immediate successors ofp where
f ∈ N∗. Define

T3′ = {r ∈ T3 | ∄r ′ ∈ (N∗)∗ : r = pr′} ∪
{p′(m·n)r | p′mnr∈ T3,n∈ N∗, r ∈ (N∗)∗} ∪
{p′(m· f ·n) | p′(m·n) ∈ T3,n∈ N∗}.

The set in the first line is the set of node of whichp is not a prefix. It is unchanged. The set
in the second line is the set of successors ofp in the 3rd dimension. They are folded in at
the place ofp. The set in the third line is the set of successor ofp in the second dimension.
They are appended to the folded-in foot node. The labelling of the nodes inT3′ is derived
from the labelling of the originating nodes inT3.

λ ′(s) =







λ (s) if s∈ T3 | ∄r ′ ∈ (N∗)∗ : s= pr′

λ (p′mnr) if s= p′(m·n)r,n∈ N∗, r ∈ (N∗)∗}
λ (p′(m·n)) if s= p′(m· f ·n),n∈ N∗.

Now we define fold-in((T3,λ ), p) = (T3′,λ ′).
The operation is similar to an adjunction operation in a TAG derivation. It can be iter-

ated until there is no internal node left. If choose(T3) is a choice function that chooses an
arbitrary internal node from a (three-dimensional) tree domainT3, then

fold-in(T3,λ ) =

{

fold-in((T3,λ ),choose(T3)) if there is an internal node inT3
(T3,λ ) otherwise

Now define recursively fold-in1(T3,λ ) = fold-in(T3,λ ) and fold-ink+1(T3,λ ) = fold-in(
fold-ink(T3,λ )). For every treet there is ak ∈ N such that fold-ink(t) = fold-ink+1(t) be-
cause there are no internal nodes left. Hence we can safely write fold-inω(t), because for
every treet the fixed point is reached after finitely many steps.

Now consider a treet that has no internal nodes. It consists of the root and its immediate
successors in the 3rd dimension. These form a two-dimensional tree. The two-dimensional
yield of a three-dimensional treet is the (two-dimensional) tree of the immediate successors
of the root of fold-inω(t), i.e,

yield(t) = {(p,λ (p)) | p∈ fold-inω(t),ε ⊳3 p}.
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After this longish definition of a two-dimensional yield of athree-dimensional tree we
can now state the main theorem of this section. It provides a logical characterisation of the
tree languages definable by MLCFTGs.

Theorem 4 A tree language is generable by a monadic linear context-free tree grammar iff
it is the two-dimensional yield of an MSO-definable three-dimensional tree language.

Proof Rogers (2003) showed in Theorems 5 and 13 that a tree languageis generable by a
non-strict TAG iff it is the two-dimensional yield of an MSO-definable three-dimensional
tree language. The theorem is an immediate consequence of Rogers’ result and our Theo-
rem 3. ⊓⊔

6 Conclusion

We showed that non-strict TAGs and monadic linear CFTGs are strongly equivalent. We
thereby rendered an old intuition about TAGs to be true (at least for non-strict ones). The
strong equivalence result yields a new logical characterisation of the expressive power of
monadic linear CFTGs. A tree language is definable by a MLCFTGiff it is the two-dimensional
yield of an MSO-definable three-dimensional tree language.

It is known that there is a whole family of mildly context-sensitive grammar formalisms
that all turned out to be weakly equivalent. It would be interesting to compare their relative
expressive powers in terms of tree languages, because, finally, linguists are interested in
linguistic analyses, i.e., tree languages, and not so much in unanalysed utterances. For string
based formalisms, the notion of strong generative capacityhas to be extended along the
lines proposed by Miller (1999). The current paper is one step in a program of comparing
the strong generative capacity of mildly context-sensitive grammar formalisms.

This research was in part funded by a grant of the German Research Council (DFG SFB-
441). We would like to thank three anonymous referees for their comments and suggestions,
which helped improving this paper.
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Kepser S, Mönnich U (2006) Closure properties of linear context-free tree languages with an application to

optimality theory. Theoretical Computer Science 354(1):82–97
Lang B (1994) Recognition can be harder than parsing. Computational Intelligence 10:486–494
Miller PH (1999) Strong Generative Capacity: The Semanticsof Linguistic Formalism. CSLI Publications
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