JoLLI manuscript No.
(will be inserted by the editor)

The Equivalence of Tree Adjoining Grammars and Monadic
Linear Context-free Tree Grammars

Stephan Kepser - Jim Rogers

the date of receipt and acceptance should be inserted later

Abstract The equivalence of leaf languages of tree adjoining grararaad monadic lin-
ear context-free grammars was shown about a decade agopdjies presents a proof of
the strong equivalence of these grammar formalisms. Nuct-§tee adjoining grammars
and monadic linear context-free grammars define the sarss ofdree languages. We also
present a logical characterisation of this tree languagsscthowing that a tree language
is a member of this class iff it is the two-dimensional yieldam MSO-definable three-
dimensional tree language.

Keywords Tree adjoining grammar, monadic linear context-free tnegngnar, monadic
second-order logic, model theoretic syntax

1 Introduction

Tree Adjoining Grammars (Joshi et al 1975; Joshi and Scha®@8) (TAGS) are a gram-
mar formalism introduced by Joshi to extend the expressoveep of context-free string
grammars (alias local tree grammars) in a small and coattaellay to render certain known
mildly context-sensitive phenomena in natural languadpe. Basic operation in these gram-
mars, the adjunction operation, consists in replacing &rnnd tree by a complete tree
drawn from a finite collection.

Context-free Tree Grammars (CFTGs, see (Gécseg and $tEd97) for an overview)
have been studied in informatics since the late 1960iesy pl@vide a very powerful mech-
anism of defining tree languages. Rules of a CFTG define hogptace non-terminal nodes
by complete trees.

Stephan Kepser

Collaborative Research Center 441
University of Tlbingen

Tubingen, Germany

E-mail: s.kepser@gmx.net

Jim Rogers

Computer Science Department
Earlham College

Richmond, IN, USA

E-mail: rogers@cs.earlham.edu

It has been observed quite early after the introduction d&3Ahat the adjoining oper-
ation seems to be a special case of the more general dedsttjpin a CFTG-derivation.
TAGs look like special cases of subclasses of CFTGs. Thistion was strengthened by
showing that the yield languages definable by TAGs are elguiv4o the yield languages
definable by monadic linear non-deleting CFTGs, as was slims@pendently by Monnich
(1997) and Fujiyoshi and Kasai (2000). The question of thengt equivalence of the two
formalisms remained unanswered.

Rogers (1998, 2003) introduced a variant of TAGs called stoict TAGs. Non-strict
TAGs generalise the definition of TAGs by releasing the ciomls that the root node an
foot node of an elementary tree must bear equal labels andhindabel of the node to be
replaced must be equal to the root node of the adjoined titefilst proposal of such an
extension of TAGs was made by Lang (1994). The new varianA&sllooks even more like
a subclass of CFTGs. And indeed, non-strict TAGs and monadiar CFTGs are strongly
equivalent. This is the main result of the present paper.

We would like to point out that there is a small technical essannected with this result.
Call a treerankediff for every node the number of its children is a function tflabel. It is
well known that CFTGs define ranked trees. TAGs on the othed dafine unranked trees.
Atree generated by a TAG may have a leaf node and an interdallabelled with the same
label. Taking the definition of ranked trees strictly, tiisidt possible with CFTG generated
trees. Our view on this issue is a practical one: a functiamoisjust defined by its name,
rather by its name and arity. Hence a three-pla@an be distinguished from a constat
by their difference in arity, though the function — or labehame is the same. For every
label, a TAG only introduces a finite set of arities. Hence wefor extending the definition
of a ranked alphabet to be a function form labels to finite setatural numbers.

The equivalence result and a previous result by Rogers j20@%ide a new charac-
terisation of the class of tree languages definable by morladiar CFTGs by means of
logics. A tree language is definable by a monadic linear CHTa®d only if it is the two-
dimensional yield of an MSO-definable three-dimensiored tanguage.

The paper is organised as follows. The next section intresltiees, context-free tree
grammars, tree-adjoining grammars, and three-dimenisiogas. Section 3 introduces a
special type of CFTGs called footed CFTGs. These grammardeaseen as the CFTG-
counterpart of TAGs. Section 3 contains the equivalence afiadic linear CFTGs and
footed CFTGs. Section 4 shows that footed CFTGs are indeedETG-counterpart of
TAGs providing the equivalence of both grammar types. Thk §éction states the afore-
mentioned logical characterisation of the expressive pafimonadic linear CFTGs.

2 Preliminaries
2.1 Trees

We consider labelled finite ordered ranked trees. A treedsred iff there is a linear order
on the daughters of each node. A tree is ranked iff the labelrafde implies the number of
daughter nodes.

A tree domain is a finite subset of the set of strings over aaturmbers that is closed
under prefixes and left sisters. Formally, Iét denote the set of all finite sequences of
natural numbers including the empty sequence Hridbe the of all finite sequences of
natural numbers excluding the empty sequence. Asetj, N* is called atree domainiff
for allu,ve N*:uve D = u e D (prefix closure) and foralle N* i e N:uie D=Vj <

i :uj € D (closure under left sisters). An element of a tree domaim igdtdress of a node in
the tree. It is called position

Let > be a set of labels. &eeis a pair(D,A) whereD is a tree domain andl : D — >
is a tree labelling function. The set of all trees labellethveiymbols from2 is denoted7s .

A tree languagé C 5 is just a subset ofs.

A setZ of labels isrankediff there is a functiorp : ¥ — Oyn (N) assigning each symbol
a finite set of arities. It = (D, A) is a tree of a ranked alphab&tthen for each position
peD:p(n—1) e D,pm¢ D for everym>n=-ne p(A(p)). For a natural numbaer the
set>" denotes the set of all labels of aritythe set? is the set of constants.

If X is a set (of symbols) disjoint fron, then 75 (X) denotes the set of tree&s x
where all elements oK are taken as constants. The elementX aire understood to be
“variables”.

Let X = {x1,%2,X3,... } be a fixed denumerable set wériables Let Xo = 0 and, for
k>1, X = {X1,....,%} C X. Fork>0,m>0,t € Jx(Xc), andty,...,tx € Tz (Xm), we
denote byt|ts,...,t%] the result ofsubstituting it for all occurrences ok; in t. Note that
tft1,...,t%] is in 75 (Xm). Note also that fok = 0, t[t1,...,t%] =t.

2.2 Context-Free Tree Grammars

We start with the definition of a context-free tree grammaotiong (Engelfriet and Schmidt
1977).

Definition 1 A context-free tree grammas a quadruplés = (>,.%#, S, P) where

z is a finite ranked alphabet términals

F is a finite ranked alphabet abnterminalsor function symbols
disjoint with X,

Se #% s thestart symbaland

P is a finite set of productions (or rules) of the form

F(X1,...,X) — T, whereF € .ZKandt € J57(X).

We use the convention that far= 0 an expression of the forf(1y,.. ., k) stands for
F. In particular, forF € .%Z9, arule is of the fornF — T with T € 5, . We sometimes use
little superscripts to indicate the arity of a non-termijride in F3.

The terminuscontext-free tree grammés abbreviated by CFTG.

For a context-free tree grammér= (X,.%,S P) we now define the direct derivation
relation. Letn > 0 and letoy, 02 € T5 2 (Xn). We defineoy :G> o, if and only if there is a
productionF (X, ...,Xx) — T, atreen € Js,#(Xn+1) containingexactly oneoccurrence of
Xn+1, and tree<y, ..., & € Txuz (Xn) such that

o1 =11, %, F(&1,...,&)]
and
02:I'][Xl,...,Xn,T[El,...,fkﬂ.

In other words g is obtained frono; by replacing an occurrence of a subtfegs, . . ., &)
by the treer[&, ..., &].

As usual,% stands for the reflexive-transitive closure gf For a context-free tree

grammarG, we definel(G) = {t € Tx | S% t}. L(G) is called thetree languagegenerated

by G. Two grammarsG andG’ areequivalentif they generate the same tree language, i.e.,
L(G) =L(G).

We define three subtypes of context-free tree grammars. dugtmnF (x1, ..., %) — T
is calledlinear, iff each variablex,,...,xx occurs at most once in. Linear productions
do not allow the copying of subtrees. A tree gramr@ae (3,.%,S P) is called alinear
context-free tree grammar, if every rule khis linear. All the CFTGs we consider in this
paper are linear.

Secondly, a ruld=(x1,...,X) — T is non-deletingff each variablexs,...,xc occurs in
7. A CFTG is non-deleting if each rule is non-deleting.

Thirdly, a CFTGG = (£,.%,S,P) is monadidiff .#* = 0 for everyk > 1. Non-terminals
can only be constants or of rank 1. Monadic linear contee¢-free grammars are abbrevi-
ated MLCFTGs.

We note that there are different types of derivation modésele for CFTGs in general.
These are (beyond the general one above) the inside-outsidexin derivation modes. In
inside-out derivation mode, a non-terminal node can onlgXpanded if the subtree below it
does not contain any other non-terminal. In outside-invdg&ion mode, a non-terminal node
can only be expanded if the path from the root to this nodes doecontain another non-
terminal node. In general, these different derivation nsagenerate different tree languages.
But for linear non-deleting CFTGs, all three different derivation modeseagate the same
tree language for a given grammar, as was shown by Kepser andith (2006). Since we
only consider linear CFTGs in this paper, we just defined greegal derivation mode.

Example 1LetG; = ({g?,a,b,c,d,e}, {S A'},S P) whereP consists of the three rules
A(X) — g

S— A(e)
Ax) — /9\ a/A\d
a g d

TN /N

b X c

G; is monadic, linear, and non-deleting. The tree languagergéed byG; is depicted in
Figure 1. As one can see, it it a regular tree language. Its yield language is the non-
context-free languagga™b"ec'd" | n > 1}.

2.3 Tree Adjoining Grammars

We consider so-called non-strict Tree Adjoining Grammalsn-strict TAGs were intro-
duced by Rogers (2003) as an extension of TAGs that reflefatihthat adjunction (or sub-
stitution) operations are fully controlled by obligatorgdaselective adjoining constraints.
There is hence no need to additionally demand the equalitgadl and foot node labels or
the equality of the labels of the replaced node with the hegl# of the adjoined tree.

Following Rogers (2003), a non-strict TAG is a péi,|) whereE is a finite set of
elementary trees in which each node is associated with

a d \
|
|n
I

9 I

/
/ \ /
a g d A
\

\

b c \
|
'n
I

9 |

Fig. 1 The tree language generated®y.

— alabel — drawn from some alphabet,

— aselective adjunctioffSA) constraint — a subset of the set of names of the elementar
trees, and

— anobligatory adjunction(OA) constraint — Boolean valued

andl C E is a distinguished non-empty set of initial trees. Each elatary tree has a foot
node.

Formally letA be a set of linguistic labels aridla be a finite set of labels disjoint from
A (the set of names of trees). A tree is a @ A) where

— Dis atree domain,
— A :D— A x[O(Na) x {true, false} a labelling function.

Hence a node is labelled by a triple consisting of a lingailstbel, an SA constraint, and an
OA constraint. We denoté&/ na the set of all trees. Aelementaryiree is a triplg(D, A,)
where D,A) is atree and € D is a leaf node, théoot node

Definition 2 A non-strict TAG is a quintupl& = (A,Na E,|,namg where

A is a set of labels,

Nais a finite set of tree names,

E is a finite set of elementary trees,

I C E is afinite set of initial trees, and

— name: E — Nais a bijection, the tree naming function.

An adjunction is the operation of replacing a nadeith a non-empty SA constraint by
an elementary treglisted in the SA constraint. The daughtersndfecome daughters of the

foot node oft. A substitution is like an adjunction except theis a leaf and hence there are
no daughters to be moved to the foot node. of

Formally, lett,t’ be two trees an@ a non-strict TAG. Thet' = (Dy, Ay) is derived from
t = (D, At) in a single step (written? t') iff there is a positionp € D; and an elementary

trees € E with foot nodefs such that

— A(p) = (L,SAOA) with L € A, SAC Na, OA€ {true,false},

- Dy={qeD;|IveNt:q=pviu{pv|veDs}U{pfyv|ve Nt pve D},
M(q) if ge DrandBve N*:q= pv,

— A(gQ) =< As(v) if ve Dsandq= pv,
A(pv) if ve NT, pve Di,q= pfsv.

We writet’ = ad j(t, p,s) if t’ is the result of adjoining in t at positionp. As usual,:g is
the reflexive-transitive closure @é Note that this definition also subsumes substitution. A
substitution is just an adjunction at a leaf node.

A tree is in the language of a given grammar, iff every OA caaist on the way is
fulfilled, i.e., no node of the tree is labelled wittue as OA constraint.

SA and OA constraints only play a role in derivations, thegudtl not appear as labels

of trees of the tree language generated by a TAG ri.dte the first projection on a triple. It
can be extended in a natural way to apply to trees by setting

— Dty = D, and for eaclp € Dy,
— A () = Lif A(p) = (L,SA OA) for someSAC Na, OA€ {true, false}.

Now

Jse | such tha’s:>t

L(G) = t
©) {rr() fpe DtWIth)\t(p) (L, SAtrue) for someL € A, SAC Na}

One of the differences between TAGs and CFTGs is that theme such concept of
a non-terminal symbol or node in TAGs. The thing that comesedt is a node labelled
with an OA constraint set terue. Such a node must be further expanded. The opposite is a
node with an empty SA constraint. Such a node is a terminag noglcause it must not be
expanded. Nodes labelled with an OA constraint séilte but a non-empty SA constraint
may or may not be expanded. They can neither be regardedhaisaénor as non-terminal
nodes.

Example 2LetG; = ({g,a,b,c,d, e}, {1,2},E, {name*(1)},name whereE andnameare

as follows:

false d

RN

c

NN

g
(9,{2},false)
[¢]

/\

To enhance readability we simpln‘led node labels for all oithat have an empty SA con-
straint. For these nodes we only present the linguisticl]ahe information (0, false) is
omitted. The foot nodes are underlined. Note that this gramseven a strict TA grammar.
Note also that it generates the same tree language as the ML@Bm Example 1, i.e.,
L(G2) =L(Gy).

2.4 Three-Dimensional Trees

We introduce the concept ofiree-dimensionatrees to provide a logical characterisation
of the tree languages generable by a monadic linear CFTGi-Muolensional trees, their
logics, grammars and automata are thoroughly discussedggrR (2003). Here, we just
guote those technical definitions to provide our result®e Té¢ader who wishes to gain a
better understanding of the concepts and formalisms coeth@dth multi-dimensional trees
is kindly referred to (Rogers 2003).

Formally, a three-dimensional tree domdiB3 Csi, (N*)* is a finite set of sequences
where each element of a sequence is itself a sequence ofihatunbers such that for
all u,v e (N*)* if uve T3 thenu € T3 (prefix closure) and for each € (N*)* the set
{v|ve N* uve T3} is a tree domain in the sense of Subsection 2.1.

Let X be a set of labels. Aree-dimensional treis a pair(T3,A) whereT3 is a three-
dimensional tree domain and: T3 — X is a (node) labelling function.

For a nodex € T3 we define its immediate successors in three dimensiondlag$o
x<gYyiff y=x-mfor someme N*, i.e.,x is the longest proper prefix gf x< y iff x=u-m
andy =u-mjfor someu e T3;me N*|j € N, i.e.x andy are at the same 3rd dimensional
level, butx is the mother ofy in a tree at that level. Finallg <, y iff x=u-mjandy =

m(j + 1) for someu € T3;me N* j € N, i.e.x andy are at the same 3rd dimensional
level andx is the immediate left sister gfin a tree at that level.

We consider the weak monadic second-order logic over tlaioab<s, <z, <1. Expla-
nations about this logic and its relationship to T3 gramnaard automata can be found in
(Rogers 2003).

3 The Equivalence between MLCFTGs and Footed CFTGs

The equivalence between MLCFTGs and TAGs is proven by shpibiat both grammar
formalisms are equivalent to a third formalism, so-calledtéd CFTGs.

Definition 3 Let G = (X,.#,SP) be alinear CFTG. Fok > 0 a ruleF(xg,...,X) — tis
footediff there exists a positiop € D; such thaip has exactlk daughters, for & i <k—1:
A(pi) = Xi+1, and no position different froip0, ..., p(k— 1)} is labelled with a variable.
The nodep is called the foot node and the path from the rodtiwf p is called thespineoft.
A CFTG G is footediff every rule of G expanding a symbol fron#* with k > 0 is footed.

Footed CFTGs are apparently the counterpart of non-s#@sIin the world of context-
free grammars. Before we show this, we present in this gethiat footed CFTGs are actu-
ally equivalent to MLCFTGs. This is done in several intermagelsteps, which are sketched
in the following diagram.

MLCFTG

/\

non-deleting MLCFTG spinal-formed CFTG
non-deleting collapse-free MLCFTG

footed CFTG

Each arrow indicates that a grammar of one type can be egquoialecasted as a gram-
mar of the target type. We first show how to convert a MLCFT@® i equivalent footed
CFTG in several steps. The start is the observation by Fsljiythat deletion rules do not
contribute to the expressive power of MLCFTGs.

Proposition 1 (Fujiyoshi 2005)For every monadic linear context-free tree grammar there
exists an equivalenton-deletingnonadic linear context-free tree grammar.

But even in a non-deleting MLCFTG there may still be rulest tihelete nodes in a
derivation step. LeG = (Z,.%#,S P) be a non-deleting MLCFTG. A rul&(x) — xin Pis
called acollapsingrule. A collapsing rule actually deletes the non-termired@A in a tree.
Iff a CFTG does not contain a collapsing rule, the grammaralted collapse-free Note
that by definition footed CFTGs are collapse-free, becalisdree on the righthand side
of a collapsing rule provides no position having daughteps Def. 3). Note also that the
example MLCFTG in Ex. 1 is non-deleting and collapse-frelee fiext proposition shows
that collapsing rules can be eliminated from MLCFTGs.

Proposition 2 For every non-deleting MLCFTG there exists an equivalemni-deleting
collapse-freeMLCFTG.

The propostion can be proven by stepwise applying all csifaprules to the right hand
sides (or rhs, for short) of the non-collapsing rules.

MLCFTGs are not necessarily footed CFTGs, even when theyhanedeleting and
collapse-free. The reason is the following. Every rightdhaide of every rule of a non-
deleting MLCFTG has exactly one occurrence of the variabRut this variable may have
sisters. l.e. there may be subtrees in the rhs which haveathe shother ag. Such a rule
is apparently not footed. And its rhs can hardly be used ase fom an elementary tree in
a TAG. Fortunately, though, a non-deleting collapse-fraddTG can be transformed into
an equivalent footed CFTG. The resulting footed CFTG is Isu®t monadic any more.
But this does not constitute any problem when translatiegdbted CFTG into a TAG.

The main idea in the transformation is the following. IBx) — t be a non-footed
grammar rule containing the subtrg@, x,t2). The undesirable sister subtrégsndt, are
replaced by variables yielding a new riéx;, Xz, X3) — t’ wheret’ is the result of replacing

the subtregy(ty, x,t2) by g(x1,%2,X3). The new rule is footed, but now ternary, not monadic.
So is the non-termindB. The original sister subtregs andt, still have to be dealt with.
Suppose there is a grammar ridéx) — 1 such thatr contains a subtreB(0). In this rhs
we replaceB(0) by B(ti, 8,t2). Now the non-terminaB is also ternary in the rhs, and the
modified grammar rule can be applied to it. And if we apply tredified grammar rule, the
treest; andt, are moved back to being sistersébind daughters of the nodgelow which
they were originally found.

The technical proof is illustrated by an example followihg i

Proposition 3 For every non-deleting collapse-free MLCFTG there exisiseguivalent
footed CFTG.

Proof Let CFTGG = (Z,.#,S P) be a non-deleting collapse-free MLCFTG. The transfor-
mation proceeds in two major steps. First step:
Let (A(x) — 1) € Pandf (ty,...t) be a subtree of such thak > 1, f € 3, t; = x for some
1< j<kandt € I5,4 fori# j. Foreach Ki <k,i # j we introduce a new non-terminal
T, ¢ .#0 of rank 0 and a new rul& — t;. RuleA(x) — T is replaced byA(x) — 1’ wheret’
is the result of replacing the subtréé,...ty) by f(T1,..., Tj—1,% Tj41,..., Tk).
This step does not change the generated tree language rigp¢haf the grammar. It is just
helpful in the formulation of the next step.

Second step:
Let CFTGG = (X,.%#,S P) be a non-deleting collapse-free MLCFTG after Step 1.
Lekt (AX) = 1) e Pand f(Ty,...Tj_1,X, Tj41,..., Tk) be a subtree of for somek and f €
2K
Consider the rule s&® = {A(x) — t} C P of rules withA(x) as their Ihs. It can be divided
into two disjoint parts. LeR; =

{A(x) — t | t contains a subtreg(T1,...Tj_1,X, Tj;1,..., Tn) for somej,nandg € ="}
andR, = R\ R;. None of the rules ifi; are footed, while all rules iR, are. DefineR] by

(AX) —t) e Ry,

t contains a subtre@(T,... Tj—1,X, Tj+1,...,Tn)
for somej,nandg e 2"

A ¢ Z is a new nonterminal of rank

t' is the result of replacing(Ty, ... Tj—1,X, Tj+1,. .., Tn)
intbyg(xg,...,Xn)

A(Xg,. .., %) =t/

Note thatR; consists of footed rules only. We also define a¥eif rewrite rules as follows.
W =

(A(X) —t) € Ry,t contains a subtreg)
A(X) — A(Ty,.. T, X Tig, - ,Tn) | 9(T, .. o1, % g, - ,Th)
for somej,nandg e ="

If Ry =0 setWs = 0. If Ry # 0 setWo = {A(X) — A(X) }. NowW =W, UWL.
Let P, = (P\ Ry) UR; be a set of grammar rules. We apply the rewrite ruleiro the
grammar rules ifP, to get the desired new gramnr Defineapp(W, B(xy, . ..,X) —t) =

int by some rule fronW

.. .
{B(Xl,...,xk) _yl|tis the result of rewriting every occurrence/&&wf}~

10

Different occurrences dkin t can be rewritten by different rules frovid. Now,

P = U appW,B(xy, ..., Xk) —t).

The new grammar i&' = (Z,.#',S P') where.#’ O % contains all new nonterminals in-
troduced in the definition d;. Rule set?’ contains only footed rules for the Iigx) and
for all new Ihs derived fronf\(x) in the definition ofR;.

Claim 1: If S%t for somet € 75, # then there is & € J5_ 2z such thalS% t’ andt

can be rewritten t¢' via rules fromw.
Claim 1 is proven by induction on the length of the derivatidn.
ForS% Sthis is trivially true.

Let S:;> t. Then there is & € J5_ # with S% sz> t. Thus there is @ € J5yzux, and a

treeg; € J5,# and a rulgB(x) — &) € P such thas = g[B[o1]] andt = o[&[01]].

We may assume théB(x) — &) € Ry, the other case being simpler.

We assumég contains a subtreg(Ty,..., Tj_1,X, Tj41,...Tk) for somej,k € N andg € sk,
HenceR, contains a ruld'(xy, ..., x) — &’ where&’ is the result of replacing the subtree
9(Te, .. Tj—1, %, Tj+1,... Te) in & by g(x4,...,%). And W contains a rewrite rul®(x) —

B (Ta,... JTi—1, % Tjgt, - Ti).

By Ind.H., there is a tred € 5 & with Sé} s ands can be rewritten tg' via rules from

W.
Thuss = 0’'[B'[Ty,...,Tj—1,01, Tj+1,... Tk]] where o (resp.o1) can be rewritten too’
(resp.oy) via rules fromw.
Thus grammar rul®'(x, . .., %) — &’ can be applied td yieldingo’[&'[T1, ..., Tj—1, 01, Tj+1,... T]] =
t’ andt can be rewritten t¢/ via rules fromw.
Note that this implies thdt(G) C L(G).
Claim 2: If Sé} t’ for somet’ € J5 5 then there is 4 € J5, 7 such thaS%t andt

can be rewritten t¢/ via rules fromw.
Claim 2 is proven by induction on the length of the derivatidn.
Forsé} Sthis is trivially true.

Letsé} t'. Then there is ad € F5 & with S% s = t'. Thus there is @' € Jx, 7/ x, and

treesoy, ..., 0, € s g andarulgB/(xy,...,x) — &) € P such that' = o’'[B'[o7, ..., 0]
andt’ = o’[§[o1,..., 04l

We assume the grammar ruB(xy, ...,) — & to be the result of transforming a unary
non-footed rule. Thus there existg & N and ag € =¥ and a grammar ruléB(x) — &’) €

P such thaté’ contains a subtreg(Ty,...,Tj—1,X, Tj+1,... Tx) (for suitable non-terminals
T1,..., Tj—1, Tj+1,... T of arity 0) and¢& is the result of first replacing this subtree by
o(xa,...,X) and then applying some rewrite rules frékh And W contains a rewrite rule
B(X) — B’(T]_7 . 7Tj—17X7Tj+la .. .Tk).

This implies thato] =T, for 1L <1 <k, I # j.

By Ind.H., there is a treee 5, # with S:;> sandscan be rewritten tg' by rules fromw.

Thuss = o[B[oj] whereo (resp.oj) can be rewritten ta’ (resp.o?) via rules fromw.
And grammar ruléB(x) — &’) € P can be applied teyielding o[&’[0}]] =t. Thatt can be
rewritten tot’ follows from g/ = Tj and the construction g’

Note that this implies thdt(G') C L(G).

11

Claims 1 and 2 show thai(G) = L(G).
By repetition of Step 2, all non-footed rules can be repldnd? O
Note that the finally resulting footed CFTG may have a lot nrafes than the original
MLCFTG. We'd like to illuminate the construction by meansaof example.

Example 3We convert the non-deleting collapse-free MLCFGg from Example 1 into

a footed CFTG. In Step 1, we replace subtrees which are sisterariables by new non-
terminals. This step is not really useful®, but we show it anyway. The resulting grammar
rules are

S — Ale
AlX) — AX) — /g\

A/Q\D A A D
B/X\C g

A — a

B — b

C — ¢ B X C

D —- d

This grammar contains non-footed rules, the two rules tkpaiedA(x). Hence we have to
apply Step 2.
Rule selRy = {A(X) — g(A,g(B.x,C),D),AX) — g(A A(g(B,x,C)),D)}.
Rule setR, = 0 is empty.
Now R| =
{A (x1,%2,%3) — 9(A, (X1, %2,X3), D), A'(X1, X2, X3) — 9(A,A(Q(X1, X2, X3)), D) }.
AndW =W; = {A(x) — A'(B,x,C)}.
ApplyingW to (P\ R1) UR] yields the new grammar

S — A(BeC)
A (X1,%2,%3) — g A (X1,%2,%3) — /9\

A g D A A D
X1 X2 X3 B o] C

A — a

B — b

cC — ¢ X1 Xo X3

D —- d

We call the resulting footed gramm@s.

Having shown by now that there is an equivalent footed CFTiG¥ery MLCFTG we
will now turn to the inverse direction. This is also done vigermediate steps.

12

The following definitions are quoted from (Fujiyoshi and 82000, p. 62). A ranked
alphabet iead-pointingiff it is a triple (X, p,h) such that %, p) is a ranked alphabet and
his a function fromZ to N such that, for eaclA € Z, if p(A) > 1 then 0< h(A) < p(A),
otherwiseh(A) = 0. The integeh(A) is called the head oA.

Definition 4 Let G = (2,.%#,SP) be a CFTG such tha# is a head-pointing ranked al-
phabet. Fom > 1, a productionA(xs, ..., X)) — t in P is spinal-formediff it satisfies the
following conditions:

— There is exactly one leaf inthat is labelled by,). The path from the root to that leaf
is called the spine df, or the spine whehtis obvious.

— For a nodal € Dy, if d is on the spine and (d) = B € % with p(B) > 1, thend - h(B)
is a node on the spine.

— Every node labelled by a variable X3 \ {xy) } is a child of a node on the spine.

ACFTGG = (2,.#,SP) is spinal-formedff every productionA(xy, ..., %) — t in P with
n> 1 is spinal-formed.

The intuition behind this definition as well as illustratiegamples can be found in
(Fujiyoshi and Kasai 2000, p. 63). We will not quote them hérecause spinal-formed
CFTGs are just an equivalent form of CFTGs on the way to shgiiat footed CFTGs can
be rendered by MLCFTGs.

Proposition 4 For every footed CFTG there exists an equivalent spinahfmt CFTG.

Note that a rule in footed CFTG fulfills the first and the thimhdition of a spinal-
formed rule already. What has to be shown is that theZseff non-terminals can be made
to be head-pointing. Since the rhs of a footed CFTG rule hasre sthe non-terminals on
the spine can be made head-pointing by following the spioealf other non-terminals we
arbitrarily choose the first daughter to be the head daughter

Proof LetG = (X,.#,S P) be a footed CFTG.
Define CFTGG' = (Z,.#',S P') as follows.
Set.7 = {(A,0) | Ac .F#>0},
Fo2={(AK) |Ac F>0 3t erhs(P),pe D;: A(p) =A, pke spindt)}, and
F'= FOUFU S
For every(A k) € 71U %5 seth(A k) = k (the head of A k)).
Define relab rhs(P) — 745 x as follows.

D = Dy,
foreachpeD:

(AK) if A(p) =Ac F>0 pke spindt),
A (y)If At(p):A€y>07p¢spin€(t)a
reladt)(p) = A if At(p) —Ac 90’

f if Ax(p)=FfeXuX

relallt) = (D, Arelat(t))

13

For treed € 9415 x the inverse of relab can be defined by

D = Dy,
foreachpeD:
Aif A&(p) = (AK) € 12U .F2,
)\re|ab—l(t)(p) = Aif A(p)=Ac Z°
fif d(p)=FfeZuX
relab ! (t) = (D, Agjap-11))
Set

P = {(AK)(X1,...,%) — relab(t) | I(A(x, ..., %)) —t) € P(Ak) € Z'} U
{A—relab(t) | 3(A—1t) e PAc.Z0).

GrammarG' is spinal-formed, as a simple check reveals.
Claim 1: For every tre¢ € I5,#: if S%t then there exists a trdé € Jx, # with

Sé} t’ andt = relab (t’).

Proven by an induction on the length of the derivation. of
ForS% Sthis is trivially true.

Let S% t. Then there is & € 5,7 with S:;> s= t. Thus there is @ € Jx,7x, and

treesay, ... ok € Isu# and arulgB(xy,...xx) — &) € P such thas= og[B[oy, ..., 0y]] and
t=ol[é[o1,...,0(].
By Ind.H., there is a tre€ € T,z with Sé} ¢ ands=relab 1(s).

By definition of P’ there is a rule((B,1)(x1,...xx) — relab§)) € P’. And there is a0’ €
Tsuzux With o = relab *(0”) and treew;, ... oy € Ts 7 with gj = relab *(a]) such
thats' = o[(B,1)[o7, ..., 0]

Therefores 3 t' = o’[rela&)[o}, ..., op]] andt = relab (t).

The argument foB € .%#° is even simpler.
Claim 2: For evert tree€ T, : if S%t thenS% relab(t).

Claim 2 can be proven by a simple induction on the length ofigré/ation oft. Claims 1
and 2 together show tha{G) = L(G). |

Proposition 5 (Fujiyoshi and Kasai 2000for every spinal-formed CFTG there exists an
equivalent MLCFTG.

This is a corollary of Theorem 1 (p. 65) of (Fujiyoshi and Kig&200). The authors see this
fact themselves. They state on p. 65 immediately above Enedr

“It follows from Theorem 1 that the class of tree languagesegated by spine
grammars is the same as the class of tree languages gereydiear nondeleting
monadic CFTGs, that is, CFTGs with nonterminals of rank 1 Gualy, and with

exactly one occurrence of x in every right-hand side of a petidn for a nontermi-
nal of rank 1.

We are now done showing that MLCFTGs are equivalent to foGiedGs.

Theorem 1 A tree language is definable by a monadic linear CFTG if andyahlit is
definable by a footed CFTG.

14

4 The Equivalence between Footed CFTGs and TAGs

The aim of this section is to show that footed CFTGs are indieedounterpart of non-strict
TAGs. The following proofs are technical, but the constiarct are not really difficult. We
first translate footed CFTGs into non-strict TAGs. The bad&a is that every right-hand
side of every rule from the CFTG is an elementary tree. Thefoeiwnode is the node that
is the mother of the variables in the rhs of a rule. Of course, variables and the nodes
bearing them have to be removed from the elementary treeofistrct the TAG, every
rhs of the CFTG gets a name. Every non-terminal in a rhs resein obligatory adjunction
constraint. The selection adjunction constraint it reegiis the set of names of those rhs
that are the rhs of the rules that expand this non-termirtad.ifiitial trees are the rhs of the
rules that expand the start symbol of the CFTG.

Proposition 6 For every footed CFTG there exists an equivalent non-stiAds.

Proof Let CFTGG = (2,.#,S P) be a footed CFTG. LelNabe a set of labels such that
INa| = |P|. Define a bijectiomame: Na— rhs(P) mapping names ihato right hand side
of rules inP in some arbitrary way.
For a non-terminah € .ZX we define the set
Rhs = {namér) | (A(x,...,X) —T) € P}.
We define a function el-treehs(P) — J5_# na by considering two cases. FEk(xq, ..., Xc) —
t) € P such thatf € D; with A¢(fi) = X141 set
D=D\{fi|0<i<k-1}
foreachpe D:

Ap) = { (At(p), 0, false) ?f A(p) € Z,
(B,Rhss, true) if Ai((p)=Be . #
el-tredt) = (D,A, f)
For(A—t) € Pset
D = Dy
foreachpe D:
Ap) = { (Au(p), 0, false) ?f A(p) € Z,
(B,Rhg, true) if Ai(p)=Be .#
f =0forke N,0fe D,0F1 ¢ D
el-tredt) = (D,A, f)
We letG' = (£,Na, {el-tredr) | r € rhs(P)},{el-tre€S)},name be the non-strict TAG
derived fromG. An example of the construction is given in Example 4, disebelow this
roof.
P For a given footed CFT@& and derived TAGG' we can define a function tag-tree :

Isuz — Isuz Nnafrom footed CFTG generated trees to TAG generated treetasitoithe
function el-tree as follows. Fdr= (D, A1) € I5# We set

D = Dy
foreachpe D:

(At(p), 0, false) if At(p) € 2,
Ap) = {(Bt,Rh%,true) it () — Be 7

tag-treét) = (D,A)

15

The function tag-tree is partially the inversemaf (the projection onto the first element of a
tuple, defined in Def. 2 on p. 5), i.gx (tag-tre€t)) =t for everyt € I5 2.

Claim 1: For every treec Js 5 if S%t then el-tre¢S) é} tag-tregt).

Proven by induction on the length of the derivatiort.of
ForS% Sthe claim is true by definition of el-trés).

Lett € Tsuz andS% t. By definition of% there is a trees such thatS% s=tanda

positionp € Ds. We distinguish two cases.

Case 1pis not a leaf node.

Then there is 8 € .7X, 0 € T5,7(X1),01,...,0k € Tsu7, arule(B(x,...,x) — &) € P
suchthas= g[B[ay,..., 0], Blo,..., 0y is the subtree at positiqn andt = o[[0, . . ., 0i]].
By Ind.H., el-tre¢S) % tag-tres) andAg-reds) (P) = (B,Rhss, true).

By definition of G’ there is an elementary tree el-t(é¢ with nameel-tre€f)) € Rhss.
Therefore we can adjoint el-trég) at position p of tag-treg¢s). By definition of adjoin,
the result of this adjoin operation is just tag-tfe€ [0, ..., 0y]]) = tag-tre€t), and hence
el-treqS) é} tag-tre€t).

Case 2pis a leaf node.

Then there is 8 € #°, 0 € F5, 7, arule(B— &) € P such thas= g[B], B is the subtree
at positionp, andt = g[¢].

By Ind.H., el-tre¢S) % tag-tres) andAg.res) (P) = (B,Rhss, true).

By definition of G’ there is an elementary tree el-t(é¢ with nameel-tred¢)) € Rhss.
Therefore we can substitu{®, Rhs;, true) with el-tre€ &) at positionp of tag-tre€s). By
definition of substitution as a special case of adjoin, tisailteof this substitution operation
is just tag-treéo[£]) = tag-tre€t), and hence el-tré&) % tag-tregt).

Claim 2: For every tree€ Jx, 7 na if €l-treg(S) é} t thenS% T (t).

Proven by induction on the length of the derivatiort.of
For el-tre€S) é} el-tregS) the claim is true by definition of el-tr¢s).
Lett € I5 2 naSuch that el-trefS) ?} t. By definition of?} there exists atre®c Js, 7 Na
such that el-tregS) (—_;} 53 t. We distinguish two cases.

Case 1: Stepgt is an adjunction step.

There is a positiorp € Ds and an elementary treec E with foot nodefs. By definition of

G’ As(p) = (B,Rhgs, true) andnamée) € Rhss.

Hence there is a rulB(xy, . .., Xx) — €) € P with e= el-trede).

Hencer () ? rm(t)andthereisa € I5,#(X1),01,...,0k € Txuz With TH(S) = 0[B[0y, . . ., 0K]]
andr(t) = ol€[oq,..., 0]

By Ind.H.,S% (). Therefores% mm(t).

Case 2: Stepéit is a substitution step.

This case is similar to the adjunction step but simpler. i@$all and 2 together show that
L(G) =L(G). O

16

Example 4To explain the construction in the proof above we transfdiengrammafG; at
the end of Example 3. The names &fa= {1,2,3,4,5,6, 7} with namedefined as

Narhs I\ila;hs
1 A(B,eC) c b
2 g(A g(x1,%2,X3),D) 6 ¢
3 g(A,A(B,g(X]_,Xz,X;;),C),D) 7 d

We obtain the following elementary trees. (Again we sinyatibde labels of typéL, 0, false)
to justL. Foot nodes are underlined.)

1: (A {2,3},true)

] T

(B, {5}, true) e (C,{6},true)
B N
(A, {4},true) (D,{7},true)
3: / \
(A,{4},true) (A,{2,3},true) (D,{7},true)
(B, {5} true) g (C,{6},true)
4: a 6: ¢
5 b 7. d

Tree 1 is the only initial tree.

If we substitute the substitution nodes 4 — 7 into the othemelntary trees, the grammar
bears a remarkable similarity the the TA gramr@rof Example 2. Tree 2 06, corre-
sponds to tree 3, and tree 1@} to the result of adjoining tree 2 into 1.

We now show the inverse direction. The idea of the conswngs to take the elementary
trees as right-hand sides of rules in a footed CFTG to be aamistl. The non-terminals that
are expanded — and hence the left-hand sides of rules — age tloales that have an SA
constraint that contains the name of the elementary treerurmhsideration. The arity of
the non-terminal is just the number of daughters of such @.nod

Proposition 7 For every non-strict TAG there exists an equivalent footed G.

Proof LetG = (2,Na E,|,namg be a non-strict TAG.
Let S¢ X be a new symbol (the new start symbol). Set

={(L,SAV) |Gt e EIpe Dy : A(p) = (L,SAV),V € {true,false}, SA#£ 0,
p(k—1) € Dy, pk¢ Dy}

17

Set.# = {S}UUk>0 ZX the set of non-terminals. For an elementary tree(Dy, A, f) € E
we definerhs(t, k) by
D=DuU{fj|0<j<k-1}

foreachpeD:
L if Au(p) = (L,0,false),L € X,
(L,SAV) if A(p) = (L,SAV),L e ,SA+£0,

v € {true,false},
Xjs1 ifp=fj,0<j<k-1

rhs(t,k) = (D,A)

Note that fork = 0 the tree domai® = D;. DefineP; as

{(L,SAV)(x1,...,%) — rhs(t,k) | (L,SAV) € .ZX t € E : namét) € SA

U {S—rhs(i,0) |ie I}

andP, as

{(L,SAfalse)(x1, ..., %) = L(X1,..., %) |
JdteEdpet:A(p) = (L,SAfalse), p(k—1) € Dy, pk ¢ Dt }.

The setP of productions i UP,. LetG' = (#,%,S P) be a CFTG.
A simple check of the definition of the productions shows Bats footed. Note that the
rules inPy are used for the derivation proper while thos@irserve the purpose of stripping
off the undesirable SA and OA constraint information codetthe non-terminals. The above
construction is illustrated by Example 5 following immetelg after the technical part of the
proof.

Claim 1: For every tre€€ Js N if i % twithi el thensé} rhs(t,0).

Ap) =

Proven by an induction on the length of the derivation. of
Foriel,ifi % i then there is a rul¢S — rhs(i,0)) € P by definition of P. And hence
sé} rhs(i, 0).
If i :;>t with i € | then there is ars € J5 na, @ane € E and a positionp € Ds such that
i % s= tandt =adj(s p,e), As(p) = (L, SAV) with L € 7, namée) € SAV € {true, false}.
Letk=max{]j | pj € Ds} +1.
By Ind,H,.,Sé} rhs(s,0).
FurthermorgL, SAV) € 7, Angs.0)(P) = (L, SAV), and((L, SAV)(xa, ..., X) — rhs(e k) €
P by definition ofP. Hencerhs(s,0) =1 rhs(t,0).

Claim 2:L(G) C L(G).
Lett € L(G). Then there is & € J5 na and ani € | such that % t" andt = m(t') and
there is no positiorp € Dy whereAy (p) = (L, SAtrue) for someL € ¥,SAC Na Now,
rhs(t’,0) (:}t using only rules fronP, by definition of P, andt’. And Sé} rhs(t’,0) by
Claim 1. Hencésé}t andt € L(G)).

Claim 3: For every treee Ts,#: if S%t using only productions frorf, then there is

ai €l and a’ € I na such thai % t’ andt = rhs(t’, 0).
Claim 3 can also be proven by an induction on the length of érevation oft.

18

Claim 4:L(G) C L(G).
Lett € I5 such that € L(G). ThenS% t. It is simple to see that there is a tree T #

such that there is a derivation seque&% sé}t and every rule irsé} sis in P, while
every rule ins%t is in P. By Claim 3, there is ane | and ans' € .5 na Ssuch thai % s

ands=rhs(s,0). Since every rule irs%t is in P, there is no positiomp in s’ such that

A¢(p) = (L, SAtrue) for somel € ¥, SAC Na Hencerg (S) € L(G) by definition ofL(G).
But since every rule iﬂét is in P, it follows thatrs (s') =t by definition ofP..

Claims 2 and 4 together show tH#iG) = L(G'). O
This completes the proof of the equivalence between foof€li&S and non-strict TAGS.

Example 5To illustrate the construction of the proof we provide anmegke of transforming
a non-strict TAG into an equivalent footed CFTG. The inputGTis G, from Example 2.
The set of non-terminals i = {S, (g, {2}, false)3}.

Rule setP; consists of two rules:

(9,{2}, false) (x1,%2,X3) — g

o

(9,{2}, false) d

I

b/ g c
X1 /xz\ X3
/

(9,{2},false) d

I

e c
(97 {2},fa|se)(x1,X2,X3) - g(X17X27X3)
The footed grammar is given By S, (g, {2},false) },{g,a,b,c,d,e},SPLUP).

The above results are accumulated in the following two tesr

g

Rule set? consists of a single rule:

Theorem 2 A tree language is definable by a footed CFTG if and only ifdtdfnable by a
non-strict TAG.

We can now present the main result of this paper. It is an inetedonsequence of the
theorem above and Theorem 1.

Theorem 3 The class of tree languages definable by non-strict Treeididg Grammars is
exactly the class of tree languages definable by monadiaricentext-free tree grammars.

19

5 A Logical Characterisation

The aim of this section is to show that the theorem above asdltseby Rogers (2003)
on TAGs can be combined to yield a logical characterisatibtrez languages definable
by monadic linear CFTGs. A tree language is generable by a IMI&iff it is the two-
dimensional yield of an MSO-definable three-dimensiored tanguage.

We start by defining the two-dimensional yield of a three-glisional tree. LefT3,A)
be a three-dimensional tree. A nodes T3 is an internal node, ifp # € (p is not the root)
and there is @' with p<3 p’ (p has an immediate successor in the 3rd dimension). For an
internal node we define a fold-in operation that replacesntiée by the subtree it roots.
Consider the seb of immediate successors pf By definition it is a two-dimensional tree
domain. We demand it to have a foot node, i.e., a distingdistwle f € S that has no
immediate successors in the second dimension. The operafiacey by S

Formally, lett = (T3,A) be a three-dimensional tree. We gayg footed in the second
dimensioniff for every nodep the two-dimensional tree domaifp’ | p<s p'} has a foot
node.
Let pe T3 be aninternal node. Henge= p’mfor somep’ € T3 (the immediate predecessor
of p) andme N*. Let pPmf € T3 be the foot node of the immediate successorns where
f € N*. Define

T3 ={reT3|dr' e (N*)" :r=pr}u
{P(m-n)r| Pmnre T3,ne N*,r € (N*)*} U
{p(m-f-n)| p'(m-n)eT3ne N}

The set in the first line is the set of node of whiglis not a prefix. It is unchanged. The set
in the second line is the set of successorp @i the 3rd dimension. They are folded in at
the place ofp. The set in the third line is the set of successop @f the second dimension.
They are appended to the folded-in foot node. The labellfrthenodes il 3’ is derived
from the labelling of the originating nodes Tr8.

A(S) if seT3|#r' € (N*)* :s=pr’
Al(s) = {/\(p’mnr) if s=p'(m-nr,ne N*r e (N*)*}

A(p'(m-n)) if s=p'(m- f-n),ne N*.

Now we define fold-ii(T3,A), p) = (T3, A’).

The operation is similar to an adjunction operation in a TAiwhtion. It can be iter-
ated until there is no internal node left. If cho¢E8) is a choice function that chooses an
arbitrary internal node from a (three-dimensional) tremdm T 3, then

fold-in((T3,A),choos€T 3)) if there is an internal node M3

fold-in(T3,A) = { (T3,2) otherwise

Now define recursively fold-(T3,A) = fold-in(T3,A) and fold-if"}(T3,A) = fold-in(
fold-ink(T3,1)). For every tred there is a& € N such that fold-ifi(t) = fold-in*1(t) be-
cause there are no internal nodes left. Hence we can safily feid-in“(t), because for
every tred the fixed point is reached after finitely many steps.

Now consider a treethat has no internal nodes. It consists of the root and itsdthate
successors in the 3rd dimension. These form a two-dimeailsicee. The two-dimensional
yield of a three-dimensional tréés the (two-dimensional) tree of the immediate successors
of the root of fold-irff’(t), i.e,

yield(t) = {(p,A(p)) | p € fold-in®(t), € <5 p}.

20

After this longish definition of a two-dimensional yield otleree-dimensional tree we
can now state the main theorem of this section. It providegyél characterisation of the
tree languages definable by MLCFTGs.

Theorem 4 A tree language is generable by a monadic linear contextfiree grammar iff
it is the two-dimensional yield of an MSO-definable thremetisional tree language.

Proof Rogers (2003) showed in Theorems 5 and 13 that a tree languggeerable by a
non-strict TAG iff it is the two-dimensional yield of an MS@efinable three-dimensional
tree language. The theorem is an immediate consequencegeffkoesult and our Theo-
rem 3. a

6 Conclusion

We showed that non-strict TAGs and monadic linear CFTGs @iongly equivalent. We
thereby rendered an old intuition about TAGs to be true @stléor non-strict ones). The
strong equivalence result yields a new logical charactos of the expressive power of
monadic linear CFTGs. A tree language is definable by a MLCHfTiGs the two-dimensional
yield of an MSO-definable three-dimensional tree language.

Itis known that there is a whole family of mildly context-s#ive grammar formalisms
that all turned out to be weakly equivalent. It would be iatting to compare their relative
expressive powers in terms of tree languages, becausdy;filrajuists are interested in
linguistic analyses, i.e., tree languages, and not so mughanalysed utterances. For string
based formalisms, the notion of strong generative capdeit/to be extended along the
lines proposed by Miller (1999). The current paper is ong 8tea program of comparing
the strong generative capacity of mildly context-sensigzammar formalisms.

This research was in part funded by a grant of the German Rés€auncil (DFG SFB-
441). We would like to thank three anonymous referees far dmenments and suggestions,
which helped improving this paper.

References

Engelfriet J, Schmidt EM (1977) IO and Ol. I. Journal of Cortgsland System Sciences 15(3):328-353

Fujiyoshi A (2005) Linearity and nondeletion on monadic teot-free tree grammars. Information Process-
ing Letters 93(3):103-107, DOI doi:10.1016/).ipl.2002.A08

Fujiyoshi A, Kasai T (2000) Spinal-formed context-freeetrgrammars. Theory of Computing Systems
33(1):59-83

Gécseg F, Steinby M (1997) Tree languages. In: RozenbeBplBmaa A (eds) Handbook of Formal Lan-
guages, Vol 3: Beyond Words, Springer-Verlag, pp 1-68

Joshi A, Schabes Y (1997) Tree adjoining grammars. In: RoaenG, Salomaa A (eds) Handbook of Formal
Languages, Handbook of Formal Languages, vol 3: Beyond 8y&pringer, Berlin, pp 69-123

Joshi A, Levy LS, Takahashi M (1975) Tree adjunct grammaurdal of Computer and System Sciences
10(1):136-163

Kepser S, Modnnich U (2006) Closure properties of lineartextafree tree languages with an application to
optimality theory. Theoretical Computer Science 35427

Lang B (1994) Recognition can be harder than parsing. Caatipoal Intelligence 10:486-494

Miller PH (1999) Strong Generative Capacity: The Semardfdsnguistic Formalism. CSLI Publications

Monnich U (1997) Adjunction as substitution. In: KruijfflaMorill G, Oehrle R (eds) Formal Grammar '97,
pp 169-178

Rogers J (1998) A Descriptive Approach to Language-Theo@mplexity. CSLI Publications

Rogers J (2003) wMSO theories as grammar formalisms. Ttiear€omputer Science 293(2):291-320

