
A Landscape of Logics

for Finite Unordered Unranked Trees

Stephan Kepser

Collaborative Research Centre 441,

University of Tübingen, Germany

kepser@sfs.uni-tuebingen.de

1 Introduction

In this paper, we consider finite labelled unordered unranked trees. A tree is called

ordered iff for each node there is a linear order on the children of this node. A

tree is called unordered iff for each node there is no order on its children. The two

notions are not complementary. But partially ordered trees have so far not attracted

any research interest.

A tree is ranked iff for each node the number of its children is a function of its label.

More generally, a ranking assigns to each label a finite set of natural numbers. Each

member of the set is a potential number of child nodes. We consider in this paper

the unranked case. That means each node may have an arbitrary, but finite, number

of children, independent of the label it bears.

Finite unordered unranked trees have many applications in computer science.

The one that is probably best known comes from semi-structured database the-

ory. Unordered unranked trees provide the so-called database-model of XML

(Abiteboul et al., 2000). Unordered unranked trees also have applications in com-

putational linguistics. They are the underlying data structures of dependency tree-

banks.

In this paper we study a large number of logics to define languages of unordered

unranked trees and compare their expressive power. Generally speaking, the logics

we consider stem from three non-disjoint areas: logics related to automata theory,

logics discussed in descriptive complexity theory, and second-order logics. The

basic logic from automata theory is monadic second-order logic. Two extensions

of this logic will also be discussed. From the area of descriptive complexity theory

we consider

• deterministic transitive closure logic,

• transitive closure logic,

1

kepser@sfs.uni-tuebingen.de

• least or initial fixed-point logic,

• partial fixed-point logic, and

• infinitary logic with finitely many variables.

We also discuss full second-order logic, its restriction to pure existential quantifica-

tion of second-order variables and its extension by second-order transitive closure.

Several of these logics form natural hierarchies of expressive power. This is true

for the automata logics, the logics from descriptive complexity theory, and second-

order logics. We will show numerous separation results in these hierarchies thus

showing that the hierarchies are mostly proper. We also present that the automata

logics are incomparable to the logics from descriptive complexity theory.

This paper is organised as follows. After the definition of finite unordered unranked

trees in the preliminaries we recall the definitions of all logics of this paper in

Section 3. Section 4 provides two simple results to start with. Section 5 contains

the separation of automata logics from fixed-point logics. How to separate the

fixed-point logics from second-order logics is shown in Section 6. A refinement

of the result in this section is provided in the next section, where we consider

complexity classes in addition to logics. The relationship between partial fixed-

point logic and infinitary logic is closer investigated in Section 8. We close the

paper with an overview of the results obtained in Section 9 and a comparison to the

situation for ordered ranked trees in Section 10.

2 Preliminaries

We consider node-labelled finite unordered unranked trees. A tree is a finite di-

graph with a distinguished node, the root and the property that for every node there

is a unique path from the root to this node. We also assume a finite set Λ of node

labels.

Formally, a tree is given by a triple (V,E,λ) where V is a finite, non-empty set of

vertices or nodes, E ⊆V ×V is a finite set of edges, and λ is a mapping from V to

Λ. Moreover, there is an r ∈V , the root, such that for each node v∈V there is n∈N

and nodes v0,v1, . . . ,vn ∈V with r = v0,vn = v and (vi,vi+1) ∈ E for all 0 ≤ i < n

(existence of a path from the root to every node). Finally for all v,v′ ∈V , if there are

n,m ∈ N, nodes v0,v1, . . . ,vn ∈V , u0,u1, . . . ,um ∈V with v = v0 = u0,vn = um = v′

and (vi,vi+1) ∈ E for 0 ≤ i < n and (u j,u j+1) ∈ E for 0 ≤ j < m then n = m and

vi = ui for all 0 ≤ i ≤ n (uniqueness of paths).

A tree language is a set of trees.

Similar to ordered trees, unordered trees can also be defined as terms. This way

of formalising them is useful in the discussions concering tree automata and their

logics. We provide it here as an equivalent alternative to the definition above. Let

2

M be a set. A multi-set is a function f : M → N stating for each element of M its

multiplicity. For a sequence m1, . . . ,mk ∈ M of not necessarily different elements

from M we denote {m1, . . . ,mk} its multi-set. A multi-set can also be seen as an

unordered sequence.

Based on multi-sets, unordered unranked trees for a given signature Λ are defined

as follows. Each L ∈ Λ is an unordered unranked tree. If t1, . . . , tk are unordered

unranked trees and L ∈ Λ then L{t1, . . . , tk} is an unordered unranked tree. The

multi-set union is denoted by ⊎. M ⊆m f in N means that M is a finite multi-set of N

(where N may also be a set).

The notion of a context, familiar from ordered trees, can also be extended to un-

ordered trees. A context is a tree with a hole in it. Let • /∈ Λ. A context is a tree

with a single occurrence of • and • occurs at a leaf. Formally, • is a context (the

trivial context) and if C is a context, t1, . . . , tk are unordered trees, and L ∈ Λ then

L{C, t1, . . . , tk} is a context. If C is a context and t an unordered tree, we write C(t)
for replacing • in C with t.

3 The Logics

3.1 First-Order Logic

First-order logic is the weakest logic we study. From the point of view of logic,

trees are particular finite first-order structures. With every tree (V,E,λ) we as-

sociate a first-order structure (V,E,(L)L∈Λ) such that L(v) iff λ(v) = L for every

v ∈V .

Definition 1 Let X0 = {x0,x1,x2, . . .} be a denumerably infinite set of first-order

variables. The first-order formulae over trees are

L(x) | E(x,y) | x = y | ¬ϕ | ϕ∧ψ | ϕ∨ψ | ∃x.ϕ | ∀x.ϕ

where x,y ∈ X0 and ϕ and ψ are formulae.

The semantics of first-order formulae is defined as usual. A variable assignment

α : X0 → V maps first-order variables to tree nodes. Let t = (V,E,(L)L∈Λ) be a

tree.

• t,α |= L(x) iff L(α(x)),

• t,α |= E(x,y) iff (α(x),α(y)) ∈ E ,

• t,α |= x = y iff α(x) = α(y),

• t,α |= ¬ϕ iff [[ϕ]]α = f alse,

• t,α |= ϕ∧ψ iff t,α |= ϕ and t,α |= ψ,

3

• t,α |= ϕ∨ψ iff t,α |= ϕ or t,α |= ψ,

• t,α |= ∃x.ϕ iff there is a v ∈V such that t,α[x 7→ v] |= ϕ,

• t,α |= ∀x.ϕ iff for all v ∈V t,α[x 7→ v] |= ϕ.

3.2 Automata Related Logics

The logics in this section are logics defined to be equivalent to certain types of tree

automata. In opposite to the case of ordered trees we will see that different types

of tree automata with different expressive power can be defined. The automata

and logics definitions that follow are taken from (Boneva and Talbot, 2005) and

(Seidl, Schwentick, and Muscholl, 2003).

Monadic second-order logic (MSO) is the extension of first-order logic by set vari-

ables and quantification over sets.

Definition 2 Let X2 = {X0,X1,X2, . . .} be a denumerable infinite set of set vari-

ables. The MSO formulae are all FO formulae and

x ∈ X | X ⊆ Y | ∃X .ϕ | ∀X .ϕ

where x ∈ X0,X ,Y ∈ X1 and ϕ is an MSO formula. A variable assignment α now

consists of a first-order assignment X0 →V and a set assignment X2 →℘(V).

• t,α |= x ∈ X iff α(x) ∈ α(X),

• t,α |= X ⊆ Y iff α(X) ⊆ α(Y),

• t,α |= ∃X .ϕ iff there is a set W ⊆V such that t,α[X 7→W] |= ϕ,

• t,α |= ∀X .ϕ iff for all sets W ⊆V t,α[X 7→W] |= ϕ.

Definition 3 The logic Counting MSO, defined by Courcelle (1990), denoted

CMSO, is an extension of MSO by predicates that allow modulo counting of sets.

The syntax of MSO is extended by atomic formulae Modi
j(X) where X is a set vari-

able, i, j ∈ N, j < i. The formula Modi
j(X) is true for a tree t iff |α(X)| mod i = j,

i.e., X has j elements modulo i.

Seidl, Schwentick, and Muscholl (2003) propose another, yet more powerful, ex-

tension of MSO, namely Presburger MSO (denoted PMSO). The name Presburger

refers to the fact that for an arbitrary node subsets of child nodes can be restricted

by constraints expressed in Presburger arithmetic. An example would be to state

that there are twice as many child nodes labelled L1 than children labelled L2.

4

Definition 4 The syntax of PMSO is given by the following grammar (quoted from

(Seidl et al., 2003)):

f ::= E(x,x) | x ∈ S | x/p | f ∧ f | ¬ f | ∃x. f | ∃X . f

S ::= X | L

p ::= t = t | t + t = t | p∧ p | ¬p | ∃y.p

t ::= [S] | y | n

f is a PMSO formula, S is a set, p is a Presburger constraint, and t is a term.

x ∈ X0 is a first-order variable, X ∈ X1 is a set variable. y ∈ Y is a first-order

Presburger variable, Y ∩ X0 = /0. L ∈ Λ is a node label. The formulae p of x/p

are Presburger-closed, i.e., do not contain free variables from Y . Intuitively, the

assertion x/p means that the children of x satisfy constraint p where a term [S]
inside p is interpreted as the number of those children of x which are contained in

S. Formally we need a variable assignment β : Y → N of arithmetic variables to

natural numbers. Arithmetic expressions have their natural semantics.

• β |= y = n iff β(y) = n,

• β |= x+ y = z iff β(x)+ β(y) = β(z),

• β |= ϕ∧ψ iff β |= ϕ and β |= ψ,

• β |= ¬ϕ iff β 6|= ϕ,

• β |= ∃y.ϕ iff there is an n ∈ N such that β[y 7→ n] |= ϕ.

Now

• t,α |= x/p iff β |= p where

β[L] = |{v ∈V | E(α(x),v),v ∈ L}| and

β[X] = |{v ∈V | E(α(x),v),v ∈ α(X)}|.

Seidl et al. (2003) also provide an automaton model for PMSO, namely Presburger

tree automata (PTA). We explain this automaton model here, because we will use

it in subsequent proofs.

Definition 5 Given a finite set Q of states, we consider the canonical set YQ of

variables which are indexed by elements in Q, i.e., YQ = {yq | q∈Q}. A Presburger

tree automaton is a quadruple A = (Q,Λ,δ,F) where

• Q is a finite set of states,

• F ⊆ Q is the set of accepting states,

• Λ is the set of node labels, and

• δ maps pairs (q,L) of states and labels to Presburger constraints with free

variables from the set YQ.

5

The formula ϕ = δ(q,L) represents the pre-condition on the children of a node la-

belled by L for the transition into state q where the possible values of the variables

yp represent the admissible multiplicatives of the state p on the children. We intro-

duce a satisfaction relation t |=A q between a tree t and a state q as follows. Assume

that t = L{t1, . . . , tk} and δ(q,L) = ϕ. Then t |=A ϕ iff there are k cardinalities n j,

and k states p j ∈ Q such that

• t j |=A p j for i ≤ j ≤ k, and

• {yp j
7→ n j | 1 ≤ j ≤ n} |= ϕ.

The language L(A) of unordered unranked trees which is accepted by the automa-

ton A is given by

L(A) = {t | ∃q ∈ F : t |=A q}.

A tree language L is PMSO-definable iff it is accepted by some Presburger tree

automaton (Seidl et al., 2003).

We also consider a subclass of Presburger constraints, namely unary ordering con-

straints. An ordering constraint is defined as

p ::= t ≤ t | p∧ p | ¬p

t ::= y | n | t + t

There is no existential quantification. An atomic constraint t ≤ t is called unary iff it

contains only one variable (but potentially several occurrences of this one variable).

A Presburger ordering constraint is called unary iff all its atomic constraints are

unary. Note that a unary constraint may contain several different variables as long

as all of its atomic constraints contain only one variable.

A Presburger tree automaton over unary ordering constraints is called a unary or-

dering PTA. Boneva and Talbot (2005) showed that a tree language L is MSO-

definable iff there exists a unary ordering PTA that accepts L.

On the basis of results by Courcelle (1990), Boneva and Talbot (2005), and

Seidl et al. (2003), the following is known about the expressive power of the differ-

ent automata logics over unordered unranked trees. Here and in the following, an

inclusion A ⊆ B means that every tree language definable in logic A is also defin-

able in logic B. A proper inclusion A (B indicates that there exist tree languages

definable in B which are undefinable in A.

FO (MSO (CMSO (PMSO

3.3 Transitive-Closure Logics

A fundamental restriction in the expressive power of first-order logic is the lack

of any type of recursion mechanism. One of the simplest and most fundamental

6

queries that are not first-order expressible is the transitive closure. It assigns to

a given binary relation E on a universe U its transitive closure, i.e., the set of all

pairs (x,y) ∈ U ×U such that there exist z0, . . . ,zr ∈ U with z0 = x,zr = y and

E(zi,zi+1) for all i < r. It was first shown in Fagin (1975) that transitive closure is

not expressible in FO.

Let M be a set and R ⊆ M ×M a binary relation over M. The transitive closure

TC(R) of R is the smallest set containing R and for all x,y,z ∈ M such that (x,y) ∈
TC(R) and (y,z) ∈ TC(R) we have (x,z) ∈ TC(R), i.e.,

TC(R) :=
\

{W | R ⊆W ⊆ M×M,∀x,y,z ∈ M : (x,y),(y,z) ∈W =⇒ (x,z) ∈W}.

This notion can be extended to relations over tuples. Let k ∈ N and R a binary

relation over k-tuples (R ⊆ Mk ×Mk). Then

TC(R) :=
\

{W |R⊆W ⊆Mk×Mk,∀x̄, ȳ, z̄∈Mk : (x̄, ȳ),(ȳ, z̄)∈W =⇒ (x̄, z̄)∈W}.

Deterministic transitive closure is the transitive closure of a deterministic, i.e.,

functional relation. For an arbitrary binary relation R over k-tuples we define its

deterministic reduct by

RD := {(x̄, ȳ) ∈ R | ∀z̄ : (x̄, z̄) ∈ R =⇒ ȳ = z̄}.

Now

DTC(R) := TC(RD).

Since neither the transitive closure of a relation nor its deterministic counterpart

are definable in FO, it makes sense to add these operators to first-order logic to

extend its expressive power in moderate and controlled way.

Definition 6 The formulae of TC are defined by adding to first-order logic the

transitive closure operator (TC):

If ϕ is a TC formula, x̄ = x1, . . . ,xn, ȳ = y1, . . . ,yn are a subset of the free vari-

ables of ϕ such that ∀i, j,xi 6= y j, and s̄ = s1, . . . ,sn, t̄ = t1, . . . , tn are terms, then

[TCx̄,ȳ ϕ](s̄, t̄) is a TC formula.

For DTC we add the deterministic transitive closure operator. If ϕ is a DTC for-

mula, then [DTCx̄,ȳ ϕ](s̄, t̄) is a DTC formula.

We also consider the special case where the transitive closure is restricted to binary

relations, i.e., the tuple size is 1. These logics are denoted as MTC (where M stands

for monadic) and MDTC.

A predicate of the form [TCx̄,ȳ ϕ] ([DTCx̄,ȳ ϕ]) is supposed to denote the (determin-

istic) transitive closure of the relation defined by ϕ.

7

Definition 7 Let t = (V,E,λ) be a tree. We define t |= ϕ for TC or DTC in the

usual way. To evaluate predicates defined with the transitive closure operator, we

define

t,α |= [TCx̄,ȳ ϕ](s̄, t̄)

iff

(α(s̄),α(t̄)) ∈ TC{(ā, b̄) | t,α |= ϕ[ā, b̄]}.

And

t,α |= [DTCx̄,ȳ ϕ](s̄, t̄)

iff

(α(s̄),α(t̄)) ∈ DTC{(ā, b̄) | t,α |= ϕ[ā, b̄]}.

We just mention in passing that for every formula in DTC there exists an equivalent

formula in TC (see, e.g., (Immerman, 1999)).

3.4 Fixed-Point Logics

The concept of adding transitive closure operators to FO can be generalised to

adding fixed-point operators. Indeed, the transitive closure is a particularly simple

type of a fixed-point operator. In this paper, we will consider least fixed-points,

inflationary fixed-points and partial fixed-points. More explanation on these logics

can be found in (Ebbinghaus and Flum, 1995; Immerman, 1999; Libkin, 2004).

Let M be a set. An operator on M is mapping F : ℘(M) →℘(M). An operator F

is called monotone, if X ⊆ Y implies F(X) ⊆ F(Y), and inflationary, if X ⊆ F(X)
for all X ,Y ∈ ℘(M). Monotone operators are known to have least fixed-points

(Tarski-Knaster-Theorem). For F :℘(M) →℘(M) monotone we define

LFP(F) =
\

{X | X = F(X)}.

Inflationary operators also have fixed-points. This fact is used to transform an

arbitrary operator G into a fixed-point operator by making it inflationary. Simply

set Ginfl(X) = X ∪G(X). Now for X0 = /0 and X i+1 = X i ∪G(X i) set

IFP(G) =
∞

[

i=0

X i.

Finally consider an arbitrary operator F :℘(M)→℘(M) and the sequence X0 = /0

and X i+1 = F(X i). This sequence need not be inflationary. It hence need not have

a fixed-point. Hence we define the partial fixed-point of F as

PFP(F) =

{
Xn if Xn = Xn+1,

/0 if Xn 6= Xn+1 for all n ≤ 2|M|.

8

Definition 8 These operators will now be added to FO in the following way. Let

R be a relational variable of arity k. For each tree t = (V,E,λ) the formula ϕ(R, x̄)
where |x̄| = k gives rise to an operator Fϕ :℘(V k) →℘(V k) defined as

Fϕ(X) = {v̄ | t |= ϕ(X/R, v̄)}.

Now

• If ϕ(R, x̄) is a formula where |x̄|= |t̄|= k then [IFPR,x̄ ϕ(R, x̄)](t̄) is a formula

of IFP.

• If ϕ(R, x̄) is a formula where R is positive in ϕ and |x̄| = |t̄| = k then

[LFPR,x̄ ϕ(R, x̄)](t̄) is a formula of LFP.

• If ϕ(R, x̄) is a formula where |x̄|= |t̄|= k then [PFPR,x̄ ϕ(R, x̄)](t̄) is a formula

of PFP.

The semantics is defined as follows

• t,α |= [IFPR,x̄ ϕ(R, x̄)](t̄) iff α(t̄) ∈ IFP(Fϕ),

• t,α |= [LFPR,x̄ ϕ(R, x̄)](t̄) iff α(t̄) ∈ LFP(Fϕ),

• t,α |= [PFPR,x̄ ϕ(R, x̄)](t̄) iff α(t̄) ∈ PFP(Fϕ),

Note that by the Gurevich and Shelah (1986) Theorem, IFP = LFP.

3.5 The Logic L ω
∞ω

The logic L∞ω is the extension of FO by arbitrary infinite disjunctions and conjunc-

tions. If Ψ is a set of formulae then
W

Ψ and
V

Ψ are formulae. And tree t |=
W

Ψ

(resp.
V

Ψ) iff t |= ψ for some (resp. all) ψ ∈ Ψ. This logic is known to be much

too powerful. In fact, every class of finite models of a given signature is definable

in L∞ω (see, e.g., (Ebbinghaus and Flum, 1995; Libkin, 2004)).

We are interested here in a particular sublogic of L∞ω, namely one in which each

formula contains only finitely many different variables.

Definition 9 The class of L∞ω formulae that use at most k distinct variables will

be denoted L k
∞ω. And the finite variable infinitary logics L ω

∞ω is defined by

L ω
∞ω =

[

k∈N

L k
∞ω.

This logic is interesting because it comprises the fixed point logics LFP, IFP, and

PFP, i.e., every class of finite structures definable in one of these logics is definable

in L ω
∞ω. Ehrenfeucht-Fraı̈ssé games for L ω

∞ω are infinitary pebble games. These

9

are frequently a lot simpler to play than Ehrenfeucht-Fraı̈ssé games for fixed-point

logics. It is therefore frequently simpler to show that a certain tree language is

undefinable in L ω
∞ω than it would be to show that this language is undefinable in a

fixed-point logic.

The following inclusions are a consequence of the definitions of the logics defined

in the last three subsections.

DTC ⊆ TC ⊆ LFP ⊆ PFP ⊆ L ω
∞ω

⊆ ⊆ ⊆

MDTC ⊆ MTC ⊆ MLFP

Furthermore, Dawar, Lindell, and Weinstein (1995) showed that LFP (L ω
∞ω. It is

also known that on arbitrary finite unordered structures DTC and TC can be sepa-

rated (Ebbinghaus and Flum, 1995, Chap. 7.6.1). But the proof does not extend to

unordered unranked trees.

3.6 Second-Order Logics

In this section we introduce three variants of second-order logics. Full second-

order logic (denoted SO) is the extension of FO by arbitrary relation variables and

arbitrary (second-order) quantification over these variables.

Definition 10 For every positive natural number n > 0, let R n = {Rn0,Rn1,Rn2, . . .}
be a denumerable infinite set of relation variables of arity n. The following formu-

lae are added to the first-order case.

Rnk(x1, . . . ,xn) | ∃Rnk.ϕ | ∀Rnk.ϕ

for all n > 0 and k ∈ N. A variable assignment for second-order logic extends a

variable assignment for FO by assigning each relation variable of arity n a set of

n-tuples of nodes. Hence α : X0 →V ∪
S

n>0Rn →V n. Let t = (V,E,(L)L∈Λ) be a

tree. Now

• t,α |= Rnk(x1, . . . ,xn) iff (α(x1), . . . ,α(xn)) ∈ α(Rnk),

• t,α |= ∃Rnk.ϕ iff there is an M ⊆V n such that t,α[Rnk 7→ M] |= ϕ,

• t,α |= ∀Rnk.ϕ iff for all M ⊆V n it is true that t,α[Rnk 7→ M] |= ϕ.

The logic ESO (for Existential SO) is a restriction of SO. In ESO all second-order

variables are globally existentially quantified. They are not involved in any quanti-

fier alternation.

10

Definition 11 A first-order matrix ξ with second-order relation variables is defined

as

L(x) | E(x,y) | x = y | Rnk(x1, . . . ,xn) | ¬ϕ | ϕ∧ψ | ϕ∨ψ | ∃x.ϕ | ∀x.ϕ

where x,y,x1, . . . ,xn ∈ X0, Rnk ∈ Rn and ϕ and ψ are FO-matrices. That is

ξ is an FO-formula, that may contain SO-relations, but must not contain SO-

quantification. Now, if ξ is an FO-matrix with SO-variables Rn1k1
, . . . ,Rnlkl

, then

∃Rn1k1
. . .∃Rnlkl

.ξ is a ESO-formula.

The semantics of formulae is the same as for SO.

ESO is sometimes denoted as Σ1
1.

The third logic of this section is SO with second-order transitive closure, de-

noted SO(TC). It was introduced by Immerman (1999, Chap. 10.4) as a logic that

strongly captures1 PSPACE. We will only make use of this logic as a logic that

strongly captures PSPACE. Hence we will not give a full definition, rather refer

the interested reader to the reference above. Let ϕ be a formula with free vari-

ables R1, . . . ,Rk,R
′
1, . . . ,R

′
k,x1, . . . ,xl,x

′
1, . . . ,x

′
l where k, l ∈ N,x1, . . . ,xl ,x

′
1, . . . ,x

′
l

are first-order variables and R1, . . . ,Rk,R
′
1, . . . ,R

′
k are second-order variables such

that for each 1 ≤ j ≤ k there is a n ∈ N with R j,R
′
j ∈ Rn (same arity). Then

[TCR1,...,Rk ,R
′
1,...,R

′
k,x1,...,xl ,x

′
1,...,x

′
l
ϕ] is a third-order 2(k+ l)-ary relation expressing the

existence of a ϕ-path between two (R1, . . . ,Rk,x1, . . . ,xl) tuples.

Second-order logics are certainly full logics in their own right (see the book by

Shapiro (1991)). But they also have a strong connection to complexity theory. Ac-

tually, descriptive complexity theory was initiated by Fagin’s (1975) result showing

that ESO strongly captures NPTIME. The logic SO strongly captures PH, the poly-

nomial hierarchy, and SO(TC) strongly captures PSPACE (see, e.g., (Immerman,

1999)).

It follows immediately from the definitions that

FO (ESO ⊆ SO ⊆ SO(TC)

Whether any of these inclusions are strict are famous open problems in complexity

theory.

3.7 Overview

We close this section with an overview over what is known about the expressive

power of the different logics defined above (see Figure 1).

1A finite structure is ordered iff its signature contains a binary relation that is interpreted as a

linear order on the universe. A logic captures a complexity class iff the logic defines the same classes

of finite ordered structures as the complexity class. A logic captures a complexity class strongly iff

the logic defines the same classes of finite arbitrary structures as the complexity class. Any logic at

least as expressive as ESO captures its respective complexity class strongly, because ESO is capable

of expressing the existence of a linear order on the universe.

11

SO(TC) L ω
∞ω

SO

ESO PFP

PMSO LFP

CMSO

MSO

MLFP TC

MTC DTC

MDTC

FO

Figure 1: Logics for finite unordered unranked trees: the base

⊃— indicates a proper inclusion.

Let us explain those parts of Figure 1 that have not yet been justified proceeding

from bottom to top.

MLFP ⊆ MSO Every monadic least fixed point is expressible in MSO.

See (Ebbinghaus and Flum, 1995, Chap. 7.5, p. 208).

TC (SO(TC) On ordered structures, TC captures NLOGSPACE. The proof of

this theorem also shows that TC ⊆ NLOGSPACE on arbitrary structures.

Since SO(TC) strongly captures PSPACE = NPSPACE, the proper inclusion

follows from the space hierarchy theorem.

PMSO ⊆ ESO Seidl et al. (2003) show that any PMSO definable tree language

is recognised in (deterministic) linear time. Since ESO strongly captures

NPTIME, the inclusion follows.

LFP ⊆ ESO On ordered structures, LFP captures PTIME. The proof of this the-

orem also shows that LFP ⊆ PTIME on arbitrary structures. Since ESO

strongly captures NPTIME, the inclusion follows.

12

4 Two Initial Results

We start with two smaller results. The first one states that even the weakest logic

extending FO, namely MDTC, is truly more powerful than FO.

Theorem 12 The logic MDTC is strictly more powerful than FO over unordered

unranked trees.

PROOF For the proper inclusion consider the tree language L1 of trees where

each leaf is at an even depth level, i.e, an even number of steps away from the root.

Let

Root(x) := ¬∃yE(y,x)

define the root of a tree. The formula

[DTCx3,x1
∃x2.E(x1,x2)∧E(x2,x3)](y,x)

expresses that there is a path of an even number of steps from x to y. Now L1 is

defined by

∃x.Root(x)∧∀y.(Lea f (y) → (y = x∨ [DTCx3,x1
∃x2.E(x1,x2)∧E(x2,x3)](y,x))).

To show that L1 is not FO-definable is a simple exercise using Ehrenfeucht-Fraı̈ssé-

games. For every quantifier depth k of an FO-formula potentially defining L1 there

are trees with maximal depth 2k and 2k + 1 such that the duplicator has a winning

strategy. �

The second result concerns the expressive power of MSO and MLFP.

Theorem 13 The logics MSO and MLFP have the same expressive power over

unordered unranked trees.

PROOF As stated above, MSO is capable of expressing monadic least fixed-

points over arbitrary finite structures (see, e.g., (Ebbinghaus and Flum, 1995,

Chap. 7.5, p. 208)).

The inverse direction is proven by capturing the run of a unary ordering PTA in

MLFP. We use the fact that the equivalence of LFP and simultaneous LFP ex-

tends to MLFP, i.e., MLFP = MLFPsimult. This is proven, e.g., in (Libkin, 2004,

Chap. 10.3).

Note that an atomic unary ordering constraint is equivalent to one of the four forms

True, False, y ≤ n or n ≤ y, where y is a Presburger variable and n ∈ N, by simple

arithmetics. Non-trivial atomic unary ordering constraints are expressible in FO.

For δ(q,L) = yp ≤ n we have

(∃x1, . . . ,xn : L(x)∧
^

1≤ j≤n

(E(x,x j)∧ x j ∈ p)∧∀z : z = x1 ∨ ·· ·∨ z = xn) → x ∈ q

13

where x is a free variable for the root of the local tree. For δ(q,L) = n ≤ yp we

have

(∃x1, . . . ,xn : L(x)∧
^

1≤ j≤n

(E(x,x j)∧ x j ∈ p)∧
^

1≤i, j≤n
i< j

xi 6= x j) → x ∈ q

Unary ordering constraints are the closure of atomic unary ordering constraints

under conjunction and negation. Hence unary ordering constraints are FO-

expressible. The free variable x has to be universally quantified to complete the

construction. Addionally we have to state that the set of states partitions the set

of nodes in a tree. For any given fixed set of states Q = {q1, . . . ,qk}, this is also

FO-expressible:

∀x :
_

1≤ j≤k

x ∈ q j,

∀x :
^

1≤ j≤k

(x ∈ q j →
^

1≤i≤k
i 6= j

x /∈ qi)

And we have to state the condition for an accepting run of the automaton, namely

that the root of the tree is assigned a final state:

∃x : ∀y ¬E(y,x)∧
_

q∈F

x ∈ q

The formula that expresses the run of the unary ordering PTA is the simultaneous

monadic least fixed point over the set of states of the conjunction of the ordering

constraints, the acceptance condition and the domain partitioning above. �

Note that for the case of ordered ranked trees, Potthoff (1994, p. 33f) showed an

even stronger result. A (ordered ranked) tree language is regular iff it is definable

in MLFP with a single (non-simultaneous) least fixed point operator. It is likely

that this result can be extended to unordered unranked trees.

5 Separating Automata Logics and Fixed-Point Logics

The aim of this section is to separate automata logics from transitive closure logics

and fixed-point logics. This is done in two subparts. In the first one we present a

tree language that is DTC-definable, but not PMSO-definable. In the second part

we present a tree language that is MSO-definable, but not TC-definable.

5.1 A DTC-Definable Tree Language

In this section we present a tree language which is DTC-definable but not PMSO-

definable (and therefore neither CMSO-definable nor MSO-definable). The lan-

guage is actually DTC2-definable, i.e., definable in DTC where the transitive clo-

sures are taken over binary relations of pairs. It is a variation of a tree language

14

defined by Tiede and Kepser (2006). We have the following node labels f ,g where

f labelles the root, g is the label for all other nodes. The language is defined as L2

= { f{gn,gn} | n ∈ N+}. It is the language of two g-chains of equal length below

the root.

The language L2 is definable in DTC as follows. Let

Lea f (x) := ¬∃yE(x,y)

define a leaf in the tree. The formula

OneCh(x) := ∃yE(x,y)∧∀z(E(x,z) → z = y)

expresses that node x has exactly one child. Consider the following predicate P:

[DTC(y1,y3),(y2,y4) E(y1,y2)∧E(y3,y4)]

which states that y2 is at the same distance from y1 as y4 from y2. Let ϕ(x1,x2) be

the formula

∀y1,y2 P(x1,x2,y1,y2) → (g(y1)∧g(y2) ∧
(Lea f (y1)∧Lea f (y2)) ∨
(OneCh(y1)∧OneCh(y2))

expressing that if y1 is at the same distance from x1 as y2 from x2 then both are

labelled with g and either both are leaves or both have exactly one child. Now the

tree language is given by

∃r,x1,x2 Root(r)∧ f (r)∧E(r,x1)∧E(r,x2)∧g(x1)∧g(x2) ∧
x1 6= x2 ∧∀z E(r,z) → (z = x1 ∨ z = x2) ∧
ϕ(x1,x2)

The formula says that r is the root, labelled f and that r has exactly two children

x1 and x2 both labelled g and ϕ holds for x1 and x2.

It is known that this tree language is not MSO-definable. We will show it is not

even PMSO-definable.

Proposition 14 The tree language L2 is DTC-definable, but is not PMSO-

definable.

The proof method is a variant of the proof for the pumping lemma for recognisable

tree languages adopted to unordered unranked trees and PTA.

PROOF Suppose A = (Q,Λ,δ,F) is a tree automaton accepting L2 and k =
|Q| is the number of states. Let m > k. Consider the tree t = f{gm,gm} ∈ L2

and in particular its subtree gm. Since m > k there must be a tree t ′ = gl1 a non-

empty context C = gl2{•} and a context C′ = gl3{•} and a state q ∈ Q such that

15

Figure 2: Separating automata logics from fixed-point logics.

l1 + l2 + l3 = m and gm = C′{C{t ′}} and both the root of t ′ and C{t ′} receive state

q in an accepting run for t.

Therefore u = f{gm,C′{C{C{t ′}}}} is accepted by A because both C{t ′} and

C{C{t ′}} receive state q in an accepting run.

But u /∈ L2. �

The results of this subsection are depicted in Figure 2. Logics in the green area are

capable of defining L2, whereas logics in the red area are not.

Theorem 15 The following inclusions are strict.

• MDTC is strictly less powerful than DTC.

• MTC is strictly less powerful than TC.

• MLFP is strictly less powerful than LFP.

16

• PMSO is strictly less powerful than ESO.

5.2 An MSO-Definable Tree Language

Consider the following tree language. It is originally defined in

(Ebbinghaus and Flum, 1995, Chap. 7.6.3) as a class of finite graphs. All

leaves are labelled either with 0 or 1. All internal nodes are labelled with B for

blank, some void node label that is there only because we demand all nodes to be

labelled. The leaf labels 0 and 1 are interpreted as false and true (resp.). Internal

nodes function as gates. They are set to true iff exactly one child node is set to

false. We consider the class of trees whose root node is evaluated to true.

Formally we define two tree languages inductively as follows. Let Λ = {0,1,B} be

a set of labels. The tree languages L3 and L4 are the smallest sets such that

0 ∈ L4

1 ∈ L3

BL′ ∈ L4 where L′ ⊆m f in L3

B({t}⊎L′) ∈ L3 where t ∈ L4 and L′ ⊆m f in L3

B({t, t ′}⊎L′⊎L′′) ∈ L4 where t, t ′ ∈ L4,L
′ ⊆m f in L4, and L′′ ⊆m f in L3.

The tree language L3 is recognised by the following Presburger tree automaton

A = ({qt ,q f },Λ,δ,{qt}) where

δ(0,q f) = true δ(0,qt) = f alse

δ(1,q f) = f alse δ(1,qt) = true

δ(B,q f) = yq f
= 0∨ yq f

≥ 2 δ(B,qt) = yq f
= 1

Hence L3 is PMSO-definable. A close inspection of δ reveals that all constraints in

the transitions are unary ordering constraints. Hence L3 is even MSO-definable.

The proof that the tree language L3 is not TC definable is an application of results

by Grohe (1994). They are reprinted in the book by Ebbinghaus and Flum (1995,

Chap. 7.6.3), which we will use as the source of our exposition.

For natural numbers r,m ∈ N we define trees Ar,m and Br,m inductively as follows.

Ar,0 : 0 Br,0 : 1

Suppose Ar,m and Br,m are already defined. Set Ar,m+1 to be

B

Br,m Br,m . . . Br,m Br,m
︸ ︷︷ ︸

r+1

17

and Br,m+1 to be

B

Ar,m Br,m . . . Br,m Br,m
︸ ︷︷ ︸

r+1

So Ar,m+1 contains r + 1 copies of Br,m while Br,m+1 contains one copy of Ar,m

and r copies of Br,m. By a simple induction, it can be shown that for all r,m ∈ N

the trees Ar,m ∈ L4 and Br,m ∈ L3. Ebbinghaus and Flum (1995, p. 229ff) prove the

following lemma. Define Pr
k ⊂ FO(TCr) as the set of formulae of added quantifier

and TC-operator nesting depth at most k and TC-operator width at most r.

Lemma 16 Let k ≥ 0 and ϕ be a TC-sentence in Pr
k . Then for m > 2 · k,

A2r,m |= ϕ iff B2r,m |= ϕ.

This lemma can now be used to show that the tree language L3 is not TC-definable.

Proposition 17 The tree language L3 is MSO-definable, but is not TC-definable.

PROOF We showed above that L3 is MSO-definable.

Suppose L3 is TC-definable. Let ϕ be the TC-formula defining L3. Then for all

k,m > 0 we now ϕ |= Br,m because {Br,m | r,m > 0} ⊂ L3.

There are k,r > 0 such that ϕ ∈ Pr
k .

Then for all m > 2k we have ϕ |= A2r,m by the above lemma.

But A2r,m /∈ L3. �

The results of this subsection are depicted in Figure 3. Logics in the green area are

capable of defining L3, whereas logics in the red area are not.

Theorem 18 The following inclusions are strict.

• MTC is strictly less powerful than MLFP and MSO.

• TC is strictly less powerful than LFP.

Theorem 19 The logics (P)MSO and TC are incomparable over the class of finite

unordered unranked trees.

18

Figure 3: Separating automata logics from fixed-point logics.

6 Separating Fixed-Point Logics and Second-Order Log-

ics

The main result of this section is that there is a tree languages definable in CMSO

that is not L ω
∞ω-definable. We use the well known fact that L ω

∞ω is not particularly

good at counting.

Let Λ = {A}. Define the tree language L5 = {(V,E,λ) | |V | = 2n for some n ∈ N}
as the set of all tree with an even number of nodes (where each node is labelled

with A). We first show that L5 is CMSO-definable. The following formula defines

L5.

∃X(∀x.x ∈ X ∧Mod2
0(X))

19

We will next show that L5 is not L ω
∞ω-definable using infinite pebble games. For

the definition of this type of games, the reader is refered to, e.g., (Libkin, 2004,

Chap. 11.2). For a natural number k define Ak to be

A

A A . . . A A
︸ ︷︷ ︸

k

and Bk to be

A

A A . . . A A A
︸ ︷︷ ︸

k+1

If k is even then Ak has an odd number of nodes while Bk has an even number

of nodes. If k is odd then Ak has an even number of nodes while Bk has an odd

number of nodes.

Lemma 20 The duplicator has a winning strategy for the infinite pebble game

PG∞
k (Ak,Bk) for every k ∈ N.

PROOF Let (a1, . . . ,ak) 7→ (b1, . . . ,bk) be a partial isomorphism between Ak

and Bk. We assume no two pebbles are ever placed on the same node, because

doing so leads to a game with less than k pebbles. We also assume that the spoiler

never leaves a pebble in its place when making a move, because if he did, the

duplicator would do the same and the move would be void.

Assume the spoiler chooses Bk and to reposition pebble j. We distinguish the fol-

lowing cases.

Case 1: There is a pebble on the root of Bk.

Since (a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial isomorphism, there is a l with 1≤ l ≤ k

such that bl is the pebble on the root of Bk and al is a pebble on the root of Ak.

Case 1.1: j = l, i.e., the spoiler chooses the pebble on the root.

Since there is now no pebble on the root of Bk, the substructure (b1, . . . ,bk) is

now a discrete structure of k elements. Since Ak has k leaves and one pebble is

placed on the root of Ak there must be an unpebbled leaf of Ak. The duplicator

places his j-th pebble on this leaf. Now (a1, . . . ,ak) is also a discrete structure and

(a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial isomorphism.

Case 1.2: j 6= l, i.e., the spoiler chooses a pebble on one of the leaves.

The spoiler moves pebble j onto an unpebbled leaf. The resulting substructure in-

duced by (b1, . . . ,bk) is obviously isomorphic to the one before the move. Actually,

it is Bk−2
∼= Ak−1. Since the substructure induced by (a1, . . . ,ak) is also Ak−1, the

20

duplicator leaves all his pebbles in place and (a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial

isomorphism.

Case 2: There is no pebble on the root of Bk.

Both (b1, . . . ,bk) and (a1, . . . ,ak) are discrete structures.

Case 2.1: The spoiler moves pebble j onto the root of Bk.

The induced structure of (b1, . . . ,bk) is now Bk−2
∼= Ak−1. The duplicator mimics

this move moving his pebble j onto the root of Ak. Now the induced structure of

(a1, . . . ,ak) is also Ak−1 and (a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial isomorphism.

Case 2.2: The spoiler moves pebble j onto an unpebbled leaf of Bk.

Then (b1, . . . ,bk) remains a discrete structure. Thus it is already isomorphic to

(a1, . . . ,ak), and the duplicator leaves all his pebbles in place.

The argument for the situation where the spoiler chooses to move on structure Ak

is analogous, actually simpler. �

The lemma implies that Ak |= ϕ iff Bk |= ϕ for every k ∈ N and ϕ ∈ L k
∞ω.

Proposition 21 The language L5 of trees with an even number of nodes is CMSO-

definable, but is not L ω
∞ω-definable.

PROOF Suppose L5 were L ω
∞ω-definable, i.e, there were a formula ϕ ∈ L ω

∞ω that

defined L5. By definition of L ω
∞ω there is a k ∈ N such that ϕ ∈ L k

∞ω. By the above

lemma, either Ak |= ϕ and Bk |= ϕ or Ak 2 ϕ and Bk 2 ϕ. But one of Ak,Bk has

an even number of nodes, while the other has an odd number of nodes. �

The results of this section are summarised in Figure 4. Logics in the green area can

define L5 whereas logics in the red one cannot.

Theorem 22 The following inclusions are strict.

• PFP is strictly less powerful than SO(TC).

• LFP is strictly less powerful than ESO.

• MSO is strictly less powerful than CMSO.

The last result is already known. We just provided an alternative proof of the result.

7 A Refinement Based on Complexity Classes

We showed that both PMSO and LFP are strictly weaker than ESO, and that they

are incomparable. But the picture is actually a bit coarse, because ESO is already

quite powerful. There seems to be no proper logic between ESO and PMSO or

LFP. But one can provide a finer grained picture based on complexity classes.

21

Figure 4: Separating fixed-point logics from second-order logics.

Seidl et al. (2003) show that PMSO is included in LinTIME. Now, reconsider tree

language L2 from Section 5.1. Checking that the two g-chains are of equal length

can be done in linear time in the size of the input tree and requires just one counter.

Therefore PMSO is strictly less powerful than LinTIME.

A known result of descriptive complexity is that LFP is included in PTIME over

arbitrary finite structures. For the case of unordered unranked trees this inclusion is

proper. This is demonstrated by tree language L5 from Section 6. The language L5

is not LFP-definable. But since it is CMSO-definable it is also PTIME-computabe.

The results of this section are summarised in Figure 5.

Theorem 23 The following inclusions are strict.

• PMSO is strictly less powerful than LinTIME.

22

SO(TC)

SO PFP

ESO

PTIME

LinTIME LFP

PMSO TC

Figure 5: A closer look at PMSO, LFP, and ESO based on complexity classes.

⊃— indicates a proper inclusion.

• LFP is strictly less powerful than PTIME.

Note that LFP being strictly less powerful than PTIME was already shown by

Lindell (1991). Our proof though is a lot simpler.

8 Separating PFP from Infinitary Logic

In this section, we consider the relationship between PFP and infinitary logic. As

the first step, we show that PFP is strictly less powerful than L ω
∞ω on unordered

unranked trees. The proof uses a method devised by Kolaitis and Vardi (1992) for

separating PFP from L ω
∞ω on finite orderings.

Theorem 24 The logic PFP is strictly less powerful than L ω
∞ω on unordered un-

ranked trees.

PROOF It can be expressed in FO that a tree is non-branching:

∀x.Lea f (x)∨ (∃y.E(x,y)∧∀z.E(x,z) → y = z).
If a tree is non-branching, then for every n ∈ N one can state that the tree has n

nodes using just 3 variables. For example, for n = 4 the formula is

∃x,y.Root(x)∧E(x,y)∧ (∃x.E(y,x)∧ (∃y.E(x,y)∧Lea f (y))).
The proof of this fact can be found in (Immerman and Kozen, 1989). So, for every

23

n ∈ N let ϕn be the L ω
∞ω-formula stating that the tree is non-branching and has ex-

actly n nodes. Now, let M be a non-recursive set of natural numbers. The following

L ω
∞ω-formula

_

n∈M

ϕn

is a non-recursive property. It is true on a tree iff it is non-branching and its number

of nodes is an element from M.

On the other hand, since PFP ⊆ PSPACE, every PFP-definable tree language is

recursive. �

Theorem 25 The logics L ω
∞ω and SO(TC) are incomparable over unordered un-

ranked trees.

PROOF The proof of the theorem above provides a tree language that is not

SO(TC)-definable. On the other hand, we saw in Section 6 that tree language L5 is

SO(TC)-definable, but not L ω
∞ω-definable. �

We saw that PFP (SO(TC) and PFP (L ω
∞ω by different tree languages. One may

now ask whether PFP can define all L ω
∞ω-definable tree languages that are com-

putable in PSPACE. It turns out that there are L ω
∞ω-definable PSPACE computable

tree languages that cannot be defined in PFP.

Theorem 26 The following inclusions are strict.

• PFP is strictly less powerful than L ω
∞ω∩ PSPACE.

• L ω
∞ω∩ PSPACE is strictly less powerful than PSPACE.

• L ω
∞ω∩ PSPACE is strictly less powerful than L ω

∞ω.

PROOF It is the first item that is to be shown here. The two others follow from

the proofs of Proposition 21 and Theorem 24.

The following proof is an extension of the proof by Dawar et al. (1995), who show

that LFP (PTIME ∩ L ω
∞ω. We follow their exposition closely quoting it frequently,

because their proofs remain true if one replaces LFP with PFP throughout.

A binary tree is a tree in which each internal node has exactly two children. A

level is a set of nodes with equal distance to the root. A binary tree is complete,

if all leaves are in one level. Let the set of labels Λ = {0,1}. Define the class T

of complete binary Λ-trees as those complete binary trees where for each level all

nodes in this level have the same label. In other words, if two nodes have the same

distance to the root then both are labelled with 0 or both are labelled with 1.

Fact 1: Every language L ⊆ T of complete binary Λ-trees is L ω
∞ω-definable.

24

A binary string is a Λ-labelled tree where each node has at most one child. We

denote the set of all binary strings by B . Every set of binary strings is also L ω
∞ω-

definable. Actually, a complete binary Λ-labelled tree encodes the same informa-

tion as a binary string, because all nodes on the same level carry the same label, a 0

or a 1. For a string b and a tree t ∈ T we write b ∼ t iff they encode the same infor-

mation. This is expressed in the following map. For every B ⊆ B and T ⊆ T define

h(B) = {t ∈ T | ∃b∈ B with b ∼ t} and h−1(T) = {b ∈ B | ∃t ∈ T with b ∼ t}. Ob-

viously h−1(h(B)) = B.

Claim 1: If B ∈ EXPSPACE then h(B) ∈ PSPACE.

Given a tree t ∈ h(B) we can extract from it a string b such that b ∼ t in

DLOGSPACE(|t|). String b can then be checked for acceptance in EXPSPACE(|b|)
= EXPSPACE(DLOGSPACE(|t|)) = PSPACE(|t|).

Claim 2: If T is PFP-definable, then h−1(T) is PFP-definable.

Lindell (1991) proves that if T is LFP-definable then h−1(T) is LFP-definable.

The main part of this proof is given in Lemma 3.2 and Corollary 3.3 by means

of a translation of LFP-formulae over complete binary trees into LFP-formulae

over binary strings. This translation is semantics-preserving for least fixed-points,

because each stage of the fixed-point construction is a so-called invariant relation.

This fact extends to partial fixed-points. If no fixed point exists for a formula, then

the PFP-operator yields the empty relation. And the empty relation is an invariant

relation. For details, see (Lindell, 1991).2

Claim 3: There exists a tree language T ⊆ T such that T ∈ PSPACE, but T is not

PFP-definable.

By the space hierarchy theorem there are string languages in EXPSPACE which are

not in PSPACE. Let B be such a string language. Then h(B) ∈ PSPACE (claim 1).

Suppose h(B) were PFP-definable. Then B were PFP-definable by Claim 2. Then

B were in PSPACE, contradicting the assumption that B not in PSPACE. Thus h(B)
is in PSPACE, but not PFP-definable.

Moreover h(B) is L ω
∞ω-definable by Fact 1. Hence h(B) ∈ L ω

∞ω∩ PSPACE, but not

PFP-definable. �

9 Conclusion

Figure 6 depicts a landscape of the expressive power of different logics for finite

unordered unranked trees. As one can see, most inclusions turn out to be proper.

The following ones have been shown in this paper to be proper.

2The proof of Claim 2, in particular the insight that Lindell’s translation of of LFP-formulae

over complete binary trees into LFP-formulae over binary strings extends to PFP, is the main new

contribution.

25

• L ω
∞ω∩ PSPACE (SO(TC),

• L ω
∞ω∩ PSPACE (L ω

∞ω,

• PFP (PSPACE ∩ L ω
∞ω,

• LFP (ESO, LFP (PTIME,

• PMSO (ESO, PMSO (LinTIME,

• MSO (CMSO,

• MLFP (LFP,

• TC (LFP,

• MTC (MSO,

• MTC (TC,

• MDTC (DTC, and

• FO (MDTC.

An important result one can see from this picture is that the automata logics are

largely incomparable to the logics stemming from descriptive complexity theory

(TC, LFP, PFP).

Most of the remaining open questions are directly related to difficult open prob-

lems in complexity theory. This is true for the second-order logics, but also

concerns the transitive closure logics. Also, the separation of LFP from PFP

amounts to the separation of PTIME from PSPACE by the Abiteboul-Vianu theo-

rem (Abiteboul and Vianu, 1995). This makes refinement a challenging task.

26

SO(TC) L ω
∞ω

SO L ω
∞ω ∩PSPACE

ESO PFP

PMSO LFP

CMSO

MSO MLFP
=

TC

MTC DTC

MDTC

FO

Figure 6: Logics for finite unordered unranked trees.

⊃— indicates a proper inclusion.

27

L ω
∞ω

SO(TC) = PFP = PSPACE

SO = PH

ESO = NP

LFP = P

TC = NLOGSPACE

DTC = DLOGSPACE

MSO = MLFP = CMSO = PMSO

MTC

MDTC

FO

Figure 7: Logics for finite ordered ranked trees.

⊃— indicates a proper inclusion.

10 The Situation for Finite Ordered Ranked Trees

For comparison we also show what is known about the expressive power of the

above mentioned logics on finite ordered ranked trees. Most questions on whether

or not inclusions are proper are open. This is probably due to the fact that they

are directly related to famous open questions in classical complexity theory. In all

logics at least as powerful as MDTC – that is in all logics considered in this paper

with the exception of FO – it is possible to define a linear order on the nodes of a

tree (see (Kepser, 2006)). Hence in these logics, ordered trees are ordered struc-

tures in the sense of descriptive complexity theory. This constitutes the relationship

to classical complexity theory. Figure 7 summarises the results on the expressive

power of different logics over ordered ranked trees.

28

There are only few known non-trivial results of proper inclusion.

Kolaitis and Vardi (1992) showed that PFP (L ω
∞ω. The proper inclusion TC

(PFP follows from the space hierarchy theorem. Tiede and Kepser (2006)

showed that MSO (DTC. And Bojanczyk et al. (2006) showed that MDTC (

MSO. Recently, ten Cate and Segoufin (2008) were able to show that MTC (

MSO.

References

Abiteboul, Serge, Peter Buneman, and Dan Suciu (2000). Data on the Web. Mor-

gan Kaufmann.

Abiteboul, Serge and Victor Vianu (1995). Computing with first-order logic. Jour-

nal of Computer and System Sciences, 50:309–335.

Bojanczyk, Mikołaj, Mathias Samuelides, Thomas Schwentick, and Luc Segoufin

(2006). Expressive power of pebble automata. In Michele Bugliesi, Bart Pre-

neel, Vladimiro Sassone, and Ingo Wegener, eds., Automata, Languages and

Programming, ICALP 2006, volume I, pp. 157–168. Springer.

Boneva, Iovka and Jean-Marc Talbot (2005). Automata and logics over unranked

and unordered trees. In Jürgen Giesl, ed., Proceedings RTA 2005, LNCS 3467,

pp. 500–515. Springer.

Courcelle, Bruno (1990). The monadic second-order logic of graphs I: Recogniz-

able sets of finite graphs. Information and Computation, 85:12–75.

Dawar, Anuj, Steven Lindell, and Scott Weinstein (1995). Infinitary logic and

inductive definability over finite structures. Information and Computation,

119(2):160–175.

Ebbinghaus, Heinz-Dieter and Jörg Flum (1995). Finite Model Theory. Springer-

Verlag.

Fagin, Ronald (1975). Monadic generalized spectra. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, 21:89–96.

Grohe, Martin (1994). The Structure of Fixed-Point Logics. Ph.D. thesis, Albert-

Ludwigs-Universität Freiburg.

Gurevich, Yuri and Saharon Shelah (1986). Fixed-point extensions of first-order

logic. Annals of Pure and Applied Logic.

Immerman, Neil (1999). Descriptive Complexity. Springer.

Immerman, Neil and Dexter Kozen (1989). Definability with bounded number of

bound variables. Information and Computation, 83:121–139.

29

Kepser, Stephan (2006). Properties of binary transitive closure logic over trees. In

Paola Monachesi, Gerald Penn, Giorgio Satta, and Shuly Wintner, eds., Formal

Grammar 2006, pp. 77–89.

Kolaitis, Phokion G. and Moshe Y. Vardi (1992). Infinitary logics and 0-1 laws.

Information and Computation, 98(2):258–294.

Libkin, Leonid (2004). Elements of Finite Model Theory. Springer.

Lindell, Steven (1991). An analysis of fixed-point queries on binary trees. Theo-

retical Computer Science, 85:75–95.

Potthoff, Andreas (1994). Logische Klassifizierung regulärer Baumsprachen.

Ph.D. thesis, Institut für Informatik, Universität Kiel.

Seidl, Helmut, Thomas Schwentick, and Anca Muscholl (2003). Numerical doc-

ument queries. In Tova Milo, ed., Proc. 22nd Symposium on Principles of

Database Systems (PODS 2003), pp. 155–166. ACM.

Shapiro, Stewart (1991). Foundations without Foundationalism: A Case for

Second-Order Logic. Oxford University Press.

ten Cate, Balder and Luc Segoufin (2008). XPath, transitive closure logic, and

nested tree walking automata. In Proceedings PODS 2008.

Tiede, Hans-Jörg and Stephan Kepser (2006). Monadic second-order logic over

trees and deterministic transitive closure logics. In Grigori Mints, ed., 13th

Workshop on Logic, Language, Information and Computation, ENTCS 165, pp.

189–199. Springer.

30

	Introduction
	Preliminaries
	The Logics
	First-Order Logic
	Automata Related Logics
	Transitive-Closure Logics
	Fixed-Point Logics
	The Logic L
	Second-Order Logics
	Overview

	Two Initial Results
	Separating Automata Logics and Fixed-Point Logics
	A DTC-Definable Tree Language
	An MSO-Definable Tree Language

	Separating Fixed-Point Logics and Second-Order Logics
	A Refinement Based on Complexity Classes
	Separating PFP from Infinitary Logic
	Conclusion
	The Situation for Finite Ordered Ranked Trees

