
The Equivalence of Tree Adjoining Grammars and Monadic
Linear Context-free Tree Grammars

Stephan Kepser
CRC 441

University of Tübingen
Tübingen, Germany

and Jim Rogers
Computer Science Department

Earlham College
Richmond, IN, USA

1 Introduction

Tree Adjoining Grammars (Joshi et al., 1975; Joshi and Schabes, 1997) (TAGs) are a grammar for-
malism introduced by Joshi to extend the expressive power ofcontext-free string grammars (alias
local tree grammars) in a small and controlled way to render certain known mildly context-sensitive
phenomena in natural language. The basic operation in thesegrammars, the adjunction operation,
consists in replacing a node in a tree by a complete tree drawnfrom a finite collection.

Context-free Tree Grammars (CFTGS, see (Gécseg and Steinby, 1997) for an overview) have been
studied in informatics since the late 1960ies. They providea very powerful mechanism of defining
tree languages. Rules of a CFTG define how to replace non-terminal nodes by complete trees.

It has been observed quite early after the introduction of TAGs that the adjoining operation seems to be
a special case of the more general deduction step in a CFTG-derivation. TAGs look like special cases
of subclasses of CFTGs. This intuition was strengthened by showing that the yield languages definable
by TAGs are equivalent to the yield languages definable by monadic linear non-deleting CFTGs, as
was shown independently by Mönnich (1997) and Fujiyoshi and Kasai (2000). The question of the
strong equivalence of the two formalisms remained unanswered.

Rogers (1998, 2003) introduced a variant of TAGs called non-strict TAGs. Non-strict TAGs generalise
the definition of TAGs by releasing the conditions that the root node an foot node of an elementary
tree must bear equal labels and that the label of the node to bereplaced must be equal to the root node
of the adjoined tree. The first proposal of such an extension of TAGs was made by Lang (1992). The
new variant of TAGs looks even more like a subclass of CFTGs. And indeed, non-strict TAGs and
monadic linear CFTGs are strongly equivalent. This is the main result of the present paper.

The paper is organised as follows. The next section introduces context-free tree grammars and tree
adjoining grammars. Section 3 provides the main result of this paper by describing how to code
monadic linear CFTGs (MLCFTG henceforth) and their derivations by non-strict TAGs and non-strict
TAGS by MLCFTGs. The next section presents a logical characterisation of the expressive power of
MLCFTGs, which is a consequence of the main result of the paper. Due to lack of space all formal
definitions and proofs are devised to a technical appendix.

1

2 CFTGs and TAGs

We assume familiarity with trees and tree domains (see Appendix) and start with the definition of a
context-free tree grammar quoting (Engelfriet and Schmidt, 1977).

Definition 1 A context-free tree grammaris a quadrupleG = (Σ,F ,S,P) where

Σ is a finite ranked alphabet ofterminals,
F is a finite ranked alphabet ofnonterminalsor function symbols,

disjoint with Σ,
S∈ F 0 is thestart symbol, and
P is a finite set of productions (or rules) of the form

F(x1, . . . ,xk) → τ, whereF ∈ F k andτ ∈ TΣ∪F (Xk).

As usual, we setσ1 ⇒
G

σ2 if and only if there is a productionF(x1, . . . ,xk)→ τ such thatσ2 is obtained

from σ1 by replacing an occurrence of a subtreeF(ξ1, . . . ,ξk) by the treeτ[ξ1, . . . ,ξk] (details in the
appendix). For a context-free tree grammarG, we defineL(G) = {t ∈ TΣ | S

∗
⇒
G

t}. L(G) is called the

tree languagegenerated byG.

We define three subtypes of context-free tree grammars. A production F(x1, . . . ,xk) → τ is called
linear, if each variablex1, . . . ,xk occurs at most once inτ. Linear productions do not allow the copying
of subtrees. A tree grammarG= (Σ,F ,S,P) is called alinear context-free tree grammar, if every rule
in P is linear. All the CFTGs we consider in this paper are linear.

Secondly, a ruleF(x1, . . . ,xk) → τ is non-deletingif each variablex1, . . . ,xk occurs inτ. A CFTG is
non-deleting if each rule is non-deleting.

Thirdly, a CFTGG = (Σ,F ,S,P) is monadicif F k = /0 for everyk > 1. Non-terminals can only be
constants or of rank 1. Monadic linear context-free tree grammars are abbreviated MLCFTGs.

The second class of grammar formalisms we consider in this paper are Tree Adjoining Grammars. We
are particularly interested in so-called non-strict Tree Adjoining Grammars. Non-strict TAGs were
introduced by Rogers (1998, 2003) as an extension of TAGs that reflects the fact that adjunction (or
substitution) operations are fully controlled by obligatory and selective adjoining constraints. There
is hence no need to additionally demand the equality of head and foot node labels or the equality of
the label of the replaced node with the head node of the adjoined tree.

Definition 2 (Rogers, 2003) A non-strict TAG is a pair(E, I) whereE is a finite set of elementary
trees in which each node is associated with

• a label – drawn from some alphabet,

• aselective adjunction(SA) constraint – a subset of the set of names of the elementary trees, and

• anobligatory adjunction(OA) constraint – Boolean valued

andI ⊆ E is a distinguished non-empty set of inital trees. Each elementary tree has a foot node.

An adjunction is the operation of replacing a noden with a non-empty SA constraint by an elementary
tree t listed in the SA constraint. The daughters ofn become daughters of the foot node oft. A

2

substitution is like an adjunction except thatn is a leaf and hence there are no daughters to be moved
to the foot node oft. A tree is in the language of a given grammar, if every OA constraint on the way
is fulfilled, i.e., no node of the tree is labelled withtrue as OA constraint. SA and OA constraints only
play a role in derivations, they should not appear as labels of trees of the tree language generated by a
TAG. Hence the tree language of a TAG is the set of tree generable by this TAG with all SA and OA
constraints stripped off.

One of the differences between TAGs and CFTGs is that there isno such concept of a non-terminal
symbol or node in TAGs. The thing that comes closest is a node labelled with an OA constraint set
to true. Such a node must be further expanded. The opposite is a node with an empty SA constraint.
Such a node is a terminal node, because it must not be expanded. Nodes labelled with an OA constraint
set tofalse but a non-empty SA constraint may or may not be expanded. Theycan neither be regarded
as terminal nor as non-terminal nodes.

3 The Equivalence of MLCFTGs and TAGs

In this section, we show how MLCFTGs and their derivations can be encoded in non-strict TAGs and
vice verse. We start with the encoding of MLCFTGs. In general, CFTGs may have deleting rules.
The application of such a rule leads to the deletion of complete subtrees generated in previous steps.
This deletion cannot be rendered by TAGs. But for MLCFTGs there is a solution to this problem, as
the following result shows.

Proposition 3 (Fujiyoshi, 2005)For every monadic linear context-free tree grammar there exists an
equivalentnon-deletingmonadic linear context-free tree grammar.

We therefore assume our MLCFTGs to be non-deleting. Under this assumption an equivalent non-
strict TAG can be constructed. The general construction idea is that each right-hand side of a rule is
in some sense an elementary tree with the foot node being the mother of the variable node.

Proposition 4 For every non-deleting MLCFTG there exists an equivalent non-strict TAG.

The full proof is to be found in the appendix. The main idea is the following. The right hand side
of each rule is taken as an elementary tree. The non-terminals in such a rhs have to be constrained
by an obligatory adjunction constraint. The associated selective adjunction constraint contains those
right hand sides that the non-terminal may be expanded into according toP. If the rhs contains the
variablex, the mother ofx is the foot node. If it does not containx, then it is the rhs of a non-terminal
of arity 0. Hence the rhs will only be used for substitution and not adjunction.

We will now show that for every TAG there exists an equivalentMLCFTG. To do this we define a
special type of CFTGs, CFTGs that are very similar to non-strict TAGs.

Definition 5 Let G = (Σ,F ,S,P) be a linear CFTG. A ruleF(x1, . . . ,xk) → t is footedif there exists
a positionp in the domain oft such thatp has exactlyk daughters, for 1≤ i ≤ k : λ(pi) = xi , and no
position different from{p1, . . . , pk} is labelled with a variable. The nodep is called the foot node and
the path from the root oft to p is called thespineof t. A CFTGG is footedif every rule ofG is footed.

3

Proposition 6 For every non-strict TAG there exists an equivalent footed CFTG.

The full construction and proof can be found in the appendix,as well as the proof of the next result.

Proposition 7 A tree language is definable by a footed CFTG if and only if it isdefinable by a monadic
linear CFTG.

We are now in the position to present the main result of our paper.

Theorem 8 The class of tree languages definable by non-strict Tree Adjoining Grammars is exactly
the class of tree languages definable by monadic linear context-free tree grammars.

4 A Logical Characterisation of MLCFTGs

The aim of this section is to show that the theorem above and results by Rogers (2003) on TAGs can
be combined to yield a logical characterisation of monadic linear CFTGs.

Theorem 9 A tree language is generable by a monadic linear context-free tree grammar iff it is the
two-dimensional yield of an MSO-definable three-dimensional tree language.

5 Conclusion

We showed that non-strict TAGs and monadic linear CFTGs are strongly equivalent. We thereby
rendered an old intuition about TAGs to be true (at least for non-strict ones). The strong equivalence
result yields a new logical characterisation of the expressive power of monadic linear CFTGs. A
tree language is definable by a MLCFTG iff it is the two-dimensional yield of an MSO-definable
three-dimensional tree language.

It is known that there is a whole family of mildly context-sensitive grammar formalisms that all turned
out to be weakly equivalent. It would be interesting to compare their relative expressive powers
in terms of tree languages, because, finally, linguists are interested in linguistic analyses, i.e., tree
languages, and not so much in unanalysed utterances. For string based formalisms, the notion of
strong generative capacity has to be extended along the lines proposed by Miller (1999). The current
paper is one step in a program of comparing the strong generative capacity of mildly context-sensitive
grammar formalisms.

References

Engelfriet, Joost and Erik Meineche Schmidt (1977). IO and OI. I. Journal of Computer and System
Sciences, 15(3):328–353.

Fujiyoshi, Akio (2005). Linearity and nondeletion on monadic context-free tree grammars.Informa-
tion Processing Letters, 93(3):103–107.

4

Fujiyoshi, Akio and Takumi Kasai (2000). Spinal-formed context-free tree grammars.Theory of
Computing Systems, 33(1):59–83.

Gécseg, Ferenc and Magnus Steinby (1997). Tree languages.In Grzegorz Rozenberg and Arto
Salomaa, eds.,Handbook of Formal Languages, Vol 3: Beyond Words, pp. 1–68. Springer-Verlag.

Joshi, Aravind, L.S. Levy, and M. Takahashi (1975). Tree adjunct grammar.Journal of Computer and
System Sciences, 10(1):136–163.

Joshi, Aravind and Yves Schabes (1997). Tree adjoining grammars. In G. Rozenberg and A. Sa-
lomaa, eds.,Handbook of Formal Languages, volume 3: Beyond Words ofHandbook of Formal
Languages, pp. 69–123. Springer, Berlin.

Kepser, Stephan and Uwe Mönnich (2006). Closure properties of linear context-free tree languages
with an application to optimality theory.Theoretical Computer Science, 354(1):82–97.

Lang, Bernard (1992). Recognition can be harder than parsing. In Proc. of the 2nd Int. Workshop on
Tree Adjoining Grammars.

Miller, Philip H. (1999). Strong Generative Capacity: The Semantics of Linguistic Formalism. CSLI
Publications.

Mönnich, Uwe (1997). Adjunction as substitution. In Geert-Jan Kruijff, Glyn Morill, and Richard
Oehrle, eds.,Formal Grammar ’97, pp. 169–178.

Rogers, James (1998).A Descriptive Approach to Language-Theoretic Complexity. CSLI Publica-
tions.

Rogers, James (2003). wMSO theories as grammar formalisms.Theoretical Computer Science,
293(2):291–320.

5

Technical Appendices

A Trees and Tree Grammars

A.1 Two-Dimensional Trees

We consider labelled finite ordered ranked trees. A tree is ordered if there is a linear order on the
daughters of each node. A tree is ranked if the label of a node implies the number of daughter nodes.

A tree domain is a finite subset of the set of strings over natural numbers that is closed under prefixes
and left sisters. Formally, a setD ⊂fin N∗ is called atree domainiff for all u,v∈ N∗ : uv∈ D ⇒ u∈ D
and for allu∈ N∗, i ∈ N : ui ∈ D ⇒ ∀ j < i : u j ∈ D. An element of a tree domain is an address of a
node in the tree. It is called aposition.

Let Σ be a set of labels. Atree is a pair(D,λ) whereD is a tree domain andλ : D → Σ is a tree
labelling function. The set of all trees labelled with symbols from Σ is denotedTΣ. A tree language
L ⊆ TΣ is just a subset ofTΣ.

A setΣ of labels isrankedif there is a functionρ : Σ →N assigning each symbol an arity. Ift = (D,λ)
is a tree of a ranked alphabetΣ then for each positionp ∈ D : ρ(λ(p)) = n ⇒ pn∈ D, pm /∈ D for
everym> n.

If X is a set (of symbols) disjoint fromΣ, thenTΣ(X) denotes the set of treesTΣ∪X where all elements
of X are taken as constants. The elements ofX are understood to be “variables”.

Let X = {x1,x2,x3, . . .} be a fixed denumerable set ofvariables. Let X0 = /0 and, fork ≥ 1, Xk =
{x1, . . . ,xk} ⊂ X. For k ≥ 0,m ≥ 0, t ∈ TΣ(Xk), and t1, . . . , tk ∈ TΣ(Xm), we denote byt[t1, . . . , tk]
the result ofsubstituting ti for xi in t. Note thatt[t1, . . . , tk] is in TΣ(Xm). Note also that fork = 0,
t[t1, . . . , tk] = t.

A.2 Context-Free Tree Grammars

For a context-free tree grammarG = (Σ,F ,S,P) we define the direct derivation relation. Letn≥ 0
and letσ1,σ2 ∈ TΣ∪F (Xn). We defineσ1 ⇒

G
σ2 if and only if there is a productionF(x1, . . . ,xk)→ τ, a

treeη ∈ TΣ∪F (Xn+1) containingexactly oneoccurrence ofxn+1, and treesξ1, . . . ,ξk ∈ TΣ∪F (Xn) such
that

σ1 = η[x1, . . . ,xn,F(ξ1, . . . ,ξk)]

and
σ2 = η[x1, . . . ,xn,τ[ξ1, . . . ,ξk]].

In other words,σ2 is obtained fromσ1 by replacing an occurrence of a subtreeF(ξ1, . . . ,ξk) by the
treeτ[ξ1, . . . ,ξk].

As usual,
∗
⇒
G

stands for the reflexive-transitive closure of⇒
G

. For a context-free tree grammarG, we

defineL(G) = {t ∈ TΣ | S
∗
⇒
G

t}. L(G) is called thetree languagegenerated byG. Two grammarsG

andG′ areequivalent, if they generate the same tree language, i.e.,L(G) = L(G′).

We note that there are different types of derivation modes defined for CFTGs in general. These
are (beyond the general one above) the inside-out and outside-in derivation modes. In inside-out

6

derivation mode, a non-terminal node can only be expanded ifthe subtree below it does not contain
any other non-terminal. In outside-in derivation mode, a non-terminal node can only be expanded if
the path from the root to this nodes does not contain another non-terminal node. In general, these
different derivation modes generate different tree languages. But forlinear CFTGs, all three different
derivation modes generate the same tree language for a givengrammar, as was shown by Kepser and
Mönnich (2006). Since we only consider linear CFTGs in thispaper, we just defined the general
derivation mode.

A.3 Tree Adjoining Grammars

We present now the formal definitions of non-strict TAGs and the tree languages they generate. LetΛ
be a set of linguistic labels andNabe a finite set of labels disjoint fromΛ (the set of names of trees).
A tree is a pair(D,λ) where

• D is a tree domain,

• λ : D → Λ×℘(Na)×{true, false} a labelling function.

Hence a node is labelled by a triple consisting of a linguistic label, an SA constraint, and an OA
constraint. We denoteTΛ,Na the set of all trees. Anelementarytree is a triple ((D,λ, f) where (D,λ)
is a tree andf ∈ D is a leaf node, thefoot node.

Definition 10 A non-strict TAG is a quintupleG = (Λ,Na,E, I ,name) where

• Λ is a set of labels,

• Na is a finite set of tree names,

• E is a finite set of elementary trees,

• I ⊆ E is a finite set of initial trees, and

• name: E → Na is a bijection, the tree naming function.

An adjunction is the operation of replacing a noden with a non-empty SA constraint by an elementary
tree t listed in the SA constraint. The daughters ofn become daughters of the foot node oft. A
substitution is like an adjunction except thatn is a leaf and hence there are no daughters to be moved
to the foot node oft.

Formally, lett, t ′ be two trees andG a non-strict TAG. Thent ′ is derived fromt in a single step (written
t ⇒

G
t ′) iff there is a positionp∈ Dt and an elementary trees∈ E with foot nodefs such that

• λt(p) = (L,SA,OA) with L ∈ Λ, SA⊆ Na,OA∈ {true, false},

• Dt ′ = {q∈ Dt | ∄v∈ N+ : q = pv}∪{pv | v∈ Ds}∪{p fsv | v∈ N+, pv∈ Dt},

• λt ′(q) =

λt(q) if q∈ Dt and∄v∈ N∗ : q = pv,
λs(v) if v∈ Ds andq = pv,
λt(pv) if v∈ N+, pv∈ Dt ,q = p fsv.

7

We writet ′ = ad j(t, p,s) if t ′ is the result of adjoinings in t at positionp. As usual,
∗
⇒
G

is the reflexive-

transitive closure of⇒
G

. Note that this definition also subsumes substitution. A substitution is just an

adjunction at a leaf node.

A tree is in the language of a given grammar, if every OA constraint on the way is fulfilled, i.e., no
node of the tree is labelled withtrue as OA constraint.

SA and OA constraints only play a role in derivations, they should not appear as labels of trees of the
tree language generated by a TAG. Letπ1 be the first projection on a triple. It can be extended in a
natural way to apply to trees by setting

• Dπ1(t) = Dt , and for eachp∈ Dt ,

• λπ1(t)(p) = L if λt(p) = (L,SA,OA) for someSA⊆ Na,OA∈ {true, false}.

Now

L(G) =

{

π1(t)

∣

∣

∣

∣

∣

∃s∈ I such thats
∗
⇒
G

t,

∄p∈ Dt with λt(p) = (L,SA,true) for someL ∈ Λ,SA⊆ Na

}

.

A.4 Three-Dimensional Trees

We introduce the concept ofthree-dimensionaltrees to provide a logical characterisation of the tree
languages generable by a monadic linear CFTG. Multi-dimensional trees, their logics, grammars and
automata are thoroughly discussed by Rogers (2003). Here, we just quote those technical definitions
to provide our results. The reader who wishes to gain a betterunderstanding of the concepts and
formalisms connected with multi-dimensional trees is kindly referred to (Rogers, 2003).

Formally, a three-dimensional tree domainT3 ⊂fin (N∗)∗ is a finite set of sequences where each el-
ement of a sequence is itself a sequence of natural numbers such that for allu,v∈ (N∗)∗ if uv∈ T3
thenu∈ T3 (prefix closure) and for eachu∈ (N∗)∗ the set{v | v∈ N∗,uv∈ T3} is a tree domain in
the sense of Subsection A.1.

Let Σ be a set of labels. Atree-dimensional treeis a pair(T3,λ) whereT3 is a three-dimensional tree
domain andλ : T3→ Σ is a (node) labelling function.

For a nodex∈T3 we define its immediate successors in three dimensions as follows. x⊳3y iff y= x·m
for somem∈ N∗, i.e.,x is the longest proper prefix ofy. x⊳2 y iff x = u ·m andy = u ·m j for some
u∈ T3,m∈ N∗, j ∈ N, i.e. x andy are at the same 3rd dimensional level, butx is the mother ofy in a
tree at that level. Finally,x⊳1 y iff = u·m j andy = u·m(j +1) for someu∈ T3,m∈ N∗, j ∈ N, i.e. x
andy are at the same 3rd dimensional level andx is the immediate left sister ofy in a tree at that level.

We consider the weak monadic second-order logic over the relations⊳3,⊳2,⊳1. Explanations about
this logic and its relationship to T3 grammars and automata can be found in (Rogers, 2003).

We next define the two-dimensional yield of a three-dimensional tree. Let(T3,λ) be a tree-
dimensional tree. A nodep ∈ T3 is an internal node, iffp 6= ε (p is not the root) and there is a
p′ with p⊳3 p′ (p has an immediate successor in the 3rd dimension). For an internal node we define
a fold-in operation that replaces the node by the subtree it roots. Consider the setS of immediate
successors ofp. By definition it is a two-dimensional tree domain. We demandit to have a foot

8

node, i.e., a distinguished nodef ∈ S that has no immediate successors in the second dimension. The
operation replacesp by S such that the immediate successors ofp in the second dimension become
the immediate successors off in the second dimension.

Formally, lett = (T3,λ) be a tree-dimensional tree. We sayt is footed in the second dimensioniff for
every nodep the two-dimensional tree domain{p′ | p⊳3 p′} has a foot node.
Let p∈ T3 be an internal node. Hencep = p′m for somep′ ∈ T3 (the immediate predecessor ofp)
andm∈ N∗. Let p′m f ∈ T3 be the foot node of the immediate successors ofp where f ∈ N∗. Define

T3′ = {r ∈ T3 | ∄r ′ ∈ (N∗)∗ : r = pr′} ∪
{p′(m·n)r | p′mnr∈ T3,n∈ N∗, r ∈ (N∗)∗} ∪
{p′(m· f ·n) | p′(m·n) ∈ T3,n∈ N∗}.

The set in the first line is the set of node of whichp is not a prefix. It is unchanged. The set in the
second line is the set of successors ofp in the 3rd dimension. They are folded in at the place ofp.
The set in the third line is the set of successor ofp in the second dimension. They are appended to the
folded-in foot node. The labelling of the nodes inT3′ is derived from the labelling of the originating
nodes inT3.

λ′(s) =

λ(s) if s∈ T3 | ∄r ′ ∈ (N∗)∗ : s= pr′

λ(p′mnr) if s= p′(m·n)r,n∈ N∗, r ∈ (N∗)∗}
λ(p′(m·n)) if s= p′(m· f ·n),n∈ N∗.

Now we define fold-in((T3,λ), p) = (T3′,λ′).

The operation is similar to an adjunction operation in a TAG derivation. It can be iterated until there is
no internal node left. If choose(T3) is a choice function that chooses an arbitrary internal nodefrom
a (three-dimensional) tree domainT3, then

fold-in(T3,λ) =

{

fold-in((T3,λ),choose(T3)) if there is an internal node inT3
(T3,λ) otherwise

Now define recursively fold-in1(T3,λ) = fold-in(T3,λ) and fold-ink+1(T3,λ) =
fold-in(fold-ink(T3,λ)). For every treet there is ak ∈ N such that fold-ink(t) = fold-ink+1(t)
because there are no internal nodes left. Hence we can safelywrite fold-inω(t), because for every tree
t the fixed point is reached after finitely many steps.

Now consider a treet that has no internal nodes. It consists of the root and its immediate successors
in the 3rd dimension. These form a two-dimensional tree. Thetwo-dimensional yield of a tree-
dimensional treet is the (two-dimensional) tree of the immediate successors of the root of fold-inω(t),
i.e,

yield(t) = {(p,λ(p)) | p∈ fold-inω(t),ε⊳3 p}.

B From MLCFTGs to TAGs

In this section, we provide the technical definitions and proofs of how MLCFTGs and their derivations
can be encoded in non-strict TAGs.

Before we can show how to code MLCFTGs with non-strict TAGs wehave to provide another restric-
tion on the way the MLCFTGs look and show that this is not really a restriction. LetG = (Σ,F ,S,P)

9

be a non-deleting MLCFTG. A ruleA(x) → x in P is called acollapsingrule. A collapsing rule ac-
tually deletes the non-terminal nodeA in a tree. Such a step cannot be performed in a TAG, which
neverdeletes any structure built in a derivation. This problem can be overcome, because collapsing
rules can be eliminated from non-deleting MLCFTGs. If a CFTGdoes not contain a collapsing rule,
the grammar is calledcollapse-free.

Proposition 11 For every non-deleting MLCFTG there exists an equivalent non-deleting collapse-
free MLCFTG.

The idea of the proof is to apply the collapsing rule to all right-hand sides. Thus it is no longer needed.
Some care has to be taken, if there is another way to expand thenon-terminal that can collapse.

PROOF. Let CFTGG = (Σ,F ,S,P) be a non-deleting MLCFTG. LetA∈ F 1 such thatA(x) → x in
P. We distinguish two cases.
Case 1: There is no ruleA(x) → t in P with t 6= x.
In this case, we apply the ruleA(x) → x to all occurrences ofA in all other right-hand sides ofP
obtainingP′. Then ruleA(x) → x can be safely removed fromP′, because it does not contain any
occurrence ofA any more. The tree language generated by(Σ,F ,S,P′) is obviously the same as that
of G.

Case 2: There is a ruleA(x) → t in P with t 6= x.
Let B(x) → t ′ be a rule inP that containsk occurrences ofA in t ′. It will be replaced by the set

B = {B(x) → t ′′ | t ′′ is the result of applyingA(x) → x to some occurrences ofA in t ′}.

The cardinality of this set is 2k. This step is performed for every rule that has some occurrence ofA
in its rhs. The new rule setP′ is P union all setsB . Then ruleA(x) → x can be safely removed from
P′. The tree language generated by(Σ,F ,S,P′) is obviously the same as that ofG. �

MLCFTGs are not necessarily footed CFTGs, even when they arenon-deleting and collapse-free. The
reason is the following. Every right-hand side of every ruleof a non-deleting MLCFTG has exactly
one occurrence of the variablex. But this variable may have sisters. I.e. there may be subtrees in the
rhs which have the same mother asx. Such a rule is apparently not footed. And its rhs can hardly
be used as a base for an elementary tree in a TAG. Fortunately,though, a non-deleting collapse-free
MLCFTG can be transformed into an equivalent footed CFTG. The resulting footed CFTG is usually
not monadic any more. But this does not constitute any problem when translating the footed CFTG
into a TAG.

Proposition 12 For every non-deleting collapse-free MLCFTG there exists an equivalent footed
CFTG.

PROOF. Let CFTGG = (Σ,F ,S,P) be a non-deleting collapse-free MLCFTG. The transformation
proceeds in two major steps. First step:
Let (A(x) → τ) ∈ P and f (t1, . . . tk) be a subtree ofτ such thatk > 1, f ∈ Σk, t j = x for some 1≤ j ≤ k
andti ∈ TΣ∪F for i 6= j. For each 1≤ i ≤ k, i 6= j we introduce a new non-terminalTi /∈ F 0 of rank 0
and a new ruleTi → ti. RuleA(x) → τ is replaced byA(x) → τ′ whereτ′ is the result of replacing
the subtreef (t1, . . . tk) by f (T1, . . . ,Tj−1,x,Tj+1, . . . ,Tk). This step does not change the generated tree
language nor the type of the grammar. It is just helpful in theformulation of the next step.

10

Second step:
Let CFTGG = (Σ,F ,S,P) be a non-deleting collapse-free MLCFTG after Step 1.
Let (A(x) → τ) ∈ P and f (T1, . . .Tj−1,x,Tj+1, . . . ,Tk) be a subtree ofτ.
We distinguish two cases.
Case 1: There is no other rule inP with A(x) as its lhs.
Firstly, ruleA(x) → τ is replaced byA(x1, . . . ,xk) → τ′ whereτ′ is the result of replacing the subtree
f (T1, . . .Tj−1,x,Tj+1, . . . ,Tk) by f (x1, . . . ,xk).
Secondly, consider the term rewrite ruleA(x) → A(T1, . . .Tj−1,x,Tj+1, . . . ,Tk). This term rewrite rule
is applied to all occurrences of a subtree headed byA of all rhs ofP (includingτ′).

Case 2: There is another rule inP with A(x) as its lhs.
This case is more complicated, because we cannot just rewrite all occurrences of subtrees headed by
A. Again, ruleA(x)→ τ is replaced byA(x1, . . . ,xk)→ τ′ whereτ′ is the result of replacing the subtree
f (T1, . . .Tj−1,x,Tj+1, . . . ,Tk) by f (x1, . . . ,xk) yielding new rule setP′′.
Secondly, consider the term rewrite ruler = (A(x) → A(T1, . . .Tj−1,x,Tj+1, . . . ,Tk)). For a grammar
rule g = (B(x1, . . . ,xn) → t) in P′′ define

app(r,g) = {B(x1, . . . ,xn) → t ′ | t ′ is the result of applyingr to some occurrences ofA in t}.

This set also contains the original grammar ruleB(x1, . . . ,xn) → t for no occurrence chosen to applyr
to. The new grammar rule setP′ is defined as

[

(B(x1,...,xn)→t)∈P′′

app(r,B(x1, . . . ,xn) → t).

The new grammarG′ = (Σ,F ∪{Ak},S,P′) generates the same tree language asG, as can be shown
by an induction on the length of the derivation. AndP′ contains one non-footed rule less thanP. By
repetition of Step 2, all non-footed rules can be replaced inP. Note that the finally resulting footed
CFTG may have a lot more rules than the original MLCFTG. �

Proposition 13 For every footed CFTG there exists an equivalent non-strictTAG.

Before providing the proof we would like to point out that in afooted CFTG there cannot be a collaps-
ing ruleA(x)→ x, because there is no positionp having daughters (cp. Def. 5). This fact is implicitely
used in the proof below.

PROOF. Let CFTGG= (Σ,F ,S,P) be a footed CFTG. LetNabe a set of labels such that|Na|= |P|.
Define a bijectionname: Na→ rhs(P) mapping names inNa to right hand side of rules inP in some
arbitrary way.

For a non-terminalA∈ F k we define the set

RhsA = {name(r) | (A(x1, . . . ,xk) → r) ∈ P}.

We define a function el-tree :rhs(P)→ TΣ∪F ,Na by considering two cases. For(A(x1, . . . ,xk)→ t)∈P
such thatf ∈ Dt with λt(f i) = xi set

D = Dt \{ f i | 1≤ i ≤ k}

for eachp∈ D :

λ(p) =

{

(λt(p), /0, false) if λt(p) ∈ Σ,
(B,RhsB,true) if λt(p) = B∈ F

el-tree(t) = (D,λ, f)

11

For (A→ t) ∈ P set

D = Dt

for eachp∈ D :

λ(p) =

{

(λt(p), /0, false) if λt(p) ∈ Σ,
(B,RhsB,true) if λt(p) = B∈ F

f = 1k for k∈ N,1k ∈ D,1k+1 /∈ D

el-tree(t) = (D,λ, f)

We letG′ = (Σ,Na,{el-tree(r) | r ∈ rhs(P)},{el-tree(S)},name) be the non-strict TAG derived from
G.

For a given footed CFTGG and derived TAGG′ we can define a function tag-tree :TΣ∪F → TΣ∪F ,Na

from footed CFTG generated trees to TAG generated trees similar to the function el-tree as follows.
For t = (Dt ,λt) ∈ TΣ∪F we set

D = Dt

for eachp∈ D :

λ(p) =

{

(λt(p), /0, false) if λt(p) ∈ Σ,
(B,RhsB,true) if λt(p) = B∈ F

tag-tree(t) = (D,λ)

The function tag-tree is partially the inverse ofπ1, i.e.,π1(tag-tree(t)) = t for everyt ∈ TΣ∪F .

Claim 1: For every treet ∈ TΣ∪F : if S
∗
⇒
G

t then el-tree(S)
∗
⇒
G′

tag-tree(t).

Proven by induction on the length of the derivation oft.
For S

∗
⇒
G

S the claim is true by definition of el-tree(S).

Let t ∈ TΣ∪F andS
∗
⇒
G

t. By definition of
∗
⇒
G

there is a treessuch thatS
∗
⇒
G

s⇒
G

t and a positionp∈ Ds.

We distinguish two cases.
Case 1:p is not a leaf node.
Then there is aB ∈ F k, σ ∈ TΣ∪F (X1),σ1, . . . ,σk ∈ TΣ∪F , a rule(B(x1, . . . ,xk) → ξ) ∈ P such that
s= σ[B[σ1, . . . ,σk]], B[σ1, . . . ,σk] is the subtree at positionp, andt = σ[ξ[σ1, . . . ,σk]].
By Ind.H., el-tree(S)

∗
⇒
G′

tag-tree(s) andλtag-tree(s)(p) = (B,RhsB, true).

By definition of G′ there is an elementary tree el-tree(ξ) with name(el-tree(ξ)) ∈ RhsB. Therefore
we can adjoint el-tree(ξ) at positionp of tag-tree(s). By definition of adjoin, the result of this adjoin
operation is just tag-tree(σ[ξ[σ1, . . . ,σk]]) = tag-tree(t), and hence el-tree(S)

∗
⇒
G′

tag-tree(t).

Case 2:p is a leaf node.
Then there is aB∈ F 0, σ1 ∈ TΣ∪F , a rule(B→ ξ) ∈ P such thats= σ1[B], B is the subtree at position
p, andt = σ1[ξ].
By Ind.H., el-tree(S)

∗
⇒
G′

tag-tree(s) andλtag-tree(s)(p) = (B,RhsB, true).

By definition ofG′ there is an elementary tree el-tree(ξ) with name(el-tree(ξ)) ∈ RhsB. Therefore we
can substitute(B,RhsB, true) with el-tree(ξ) at positionp of tag-tree(s). By definition of substitution
as a special case of adjoin, the result of this substitution operation is just tag-tree(σ1[ξ]) = tag-tree(t),
and hence el-tree(S)

∗
⇒
G′

tag-tree(t).

12

Claim 2: For every treet ∈ TΣ∪F ,Na: if el-tree(S)
∗
⇒
G′

t thenS
∗
⇒
G

π1(t).

Proven by induction on the length of the derivation oft.
For el-tree(S)

∗
⇒
G′

el-tree(S) the claim is true by definition of el-tree(S).

Let t ∈ TΣ∪F ,Na such that el-tree(S)
∗
⇒
G′

t. By definition of
∗
⇒
G′

there exists a trees∈ TΣ∪F ,Na such that

el-tree(S)
∗
⇒
G′

s⇒
G′

t. We distinguish two cases.

Case 1: Steps⇒
G′

t is an adjunction step.

There is a positionp ∈ Ds and an elementary treee∈ E with foot node fs. By definition of G′

λs(p) = (B,RhsB,true) andname(e) ∈ RhsB.
Hence there is a rule(B(x1, . . . ,xk) → e′) ∈ P with e= el-tree(e′).
Henceπ1(s) ⇒

G
π1(t) and there is aσ ∈ TΣ∪F (X1),σ1, . . . ,σk ∈ TΣ∪F with π1(s) = σ[B[σ1, . . . ,σk]]

andπ1(t) = σ[e′[σ1, . . . ,σk]].
By Ind.H.,S

∗
⇒
G

π1(s). ThereforeS
∗
⇒
G

π1(t).

Case 2: Steps⇒
G′

t is a substitution step.

There is a leaf nodep ∈ Ds and an elementary treee∈ E with foot node fs. By definition of G′

λs(p) = (B,RhsB,true) andname(e) ∈ RhsB.
Hence there is a rule(B→ e′) ∈ P with e= el-tree(e′).
Henceπ1(s) ⇒

G
π1(t) and there is aσ1 ∈ TΣ∪F with π1(s) = σ1[B] andπ1(t) = σ1[e′].

By Ind.H.,S
∗
⇒
G

π1(s). ThereforeS
∗
⇒
G

π1(t).

Claims 1 and 2 together show thatL(G) = L(G′). �

C From TAGs to MLCFTGs

In this section, we present the proof that for every TAG thereexists an equivalent MLCFTG. This
happens in several steps. First, we show that TAGs can be rendered as footed CFTGs. Then we
introduce spinal formed CFTGs. This type of CFTGs was definedby Fujiyoshi and Kasai (2000). We
show that for every footed CFTG there exists an equivalent spinal-formed CFTG. We proceed quoting
a result by Fujiyoshi and Kasai (2000) that states that for every spinal-formed CFTG there exists an
equivalent MLCFTG.

Proposition 14 For every non-strict TAG there exists an equivalent footed CFTG.

PROOF. Let G = (Σ,Na,E, I ,name) be a non-strict TAG.
Let S /∈ Σ be a new symbol. Set

Nk = {(L,SA,v) | ∃t ∈ E∃p∈ Dt : λt(p) = (L,SA,v),v∈ {true, false},SA 6= /0,
pk∈ Dt , p(k+1) /∈ Dt}.

13

SetN = {S}∪
S

k≥0 Nk the set of non-terminals. For an elementary treet = (Dt ,λt , f) ∈ E we define
rhs(t,k) by

D = Dt ∪{ f j | 1≤ j ≤ k}

for eachp∈ D :

λ(p) =

L if λt(p) = (L, /0, false),L ∈ Σ,
(L,SA,v) if λt(p) = (L, /0,v),L ∈ Σ,SA 6= /0,v∈ {true, false},
x j if p = f j,1≤ j ≤ k

rhs(t,k) = (D,λ)

Note that fork = 0 the tree domainD = Dt . DefineP1 as

{(L,SA,v)(x1, . . . ,xk) → rhs(t,k) | (L,SA,v) ∈ Nk, t ∈ E : name(t) = SA}

∪ {S→ rhs(i,0) | i ∈ I}

andP2 as

{(L,SA, false)(x1, . . . ,xk) → L(x1, . . . ,xk) |
∃t ∈ E∃p∈ t : λt(p) = (L,SA, false), pk∈ Dt , p(k+1) /∈ Dt}.

The setP of productions isP1∪P2. Let G′ = (N,Σ,S,P) be a CFTG.
A simple check of the definition of the productions shows thatG′ is footed.

Claim 1: For every treet ∈ TΣ,Na: if i
∗
⇒
G

t with i ∈ I thenS
∗
⇒
G′

rhs(t,0).

Proven by an induction on the length of the derivation oft.
For i ∈ I , if i

∗
⇒
G

i then there is a rule(S→ rhs(i,0)) ∈ P by definition ofP. And henceS
∗
⇒
G′

rhs(i,0).

If i
∗
⇒
G

t with i ∈ I then there is ans∈ TΣ,Na, ane∈ E and a positionp∈ Ds such thati
∗
⇒
G

s⇒
G

t and

t = ad j(s, p,e), λs(p) = (L,SA,v) with L ∈ Σ,name(e) ∈ SA,v∈ {true, false}. Let k = max{ j | p j ∈
Ds}.
By Ind,H,.,S

∗
⇒
G′

rhs(s,0).

Furthermore(L,SA,v) ∈ Nk, λrhs(s,0)(p) = (L,SA,v), and((L,SA,v)(x1, . . . ,xk) → rhs(e,k)) ∈ P by
definition ofP. Hencerhs(s,0) ⇒

G′
rhs(t,0).

Claim 2: L(G) ⊆ L(G′).
Let t ∈ L(G). Then there is at ′ ∈ TΣ,Na and ani ∈ I such thati

∗
⇒
G

t ′ andt = π1(t ′) and there is no

positionp∈ Dt ′ whereλt ′(p) = (L,SA,true) for someL ∈ Σ,SA⊆ Na. Now, rhs(t ′,0)
∗
⇒
G′

t using only

rules fromP2 by definition ofP2 andt ′. And S
∗
⇒
G′

rhs(t ′,0) by Claim 1. HenceS
∗
⇒
G′

t andt ∈ L(G′).

Claim 3: For every treet ∈ TΣ∪N: if S
∗
⇒
G′

t using only productions fromP1 then there is ai ∈ I and a

t ′ ∈ TΣ,Na such thati
∗
⇒
G

t ′ andt = rhs(t ′,0).

Proven by an induction on the length of the derivation oft.
If S⇒

G′
t then there is ani ∈ I such thatt = rhs(i,0) by definition ofP1. And hencei

∗
⇒
G

i.

If S
∗
⇒
G′

t using only productions fromP1, then there is ans ∈ TΣ∪N such thatS
∗
⇒
G′

s ⇒
G′

t us-

ing only productions fromP1. Thus there is a positionp ∈ Ds a label (L,SA,v) ∈ Nk with

14

L ∈ Σ,v ∈ {true, false},λs(p) = (L,SA,v). There is a rule((L,SA,v) → ξ) ∈ P1 and treesσ ∈
TΣ∪N(X1),σ1, . . . ,σk ∈ TΣ∪N such thats= σ[(L,SA,v)[σ1, . . . ,σk]] andt = σ[ξ[σ1, . . . ,σk]].
By Ind.H., there is ani ∈ I ands′ ∈ TΣ,Na such thati

∗
⇒
G

s′ ands= rhs(s′,0), λs′(p) = (L,SA,v).

By definition ofP1 there is ane∈ E such thatξ = rhs(e,k) andname(e) ∈ SA. Now,s⇒
G

ad j(s′, p,e)

andt = rhs(ad j(s′ , p,e),0). Hencei
∗
⇒
G

ad j(s′, p,e).

Claim 4: L(G′) ⊆ L(G).
Let t ∈ TΣ such thatt ∈ L(G′). ThenS

∗
⇒
G′

t. It is simple to see that there is a trees∈ TΣ∪N such that

there is a derivation sequenceS
∗
⇒
G′

s
∗
⇒
G′

t and every rule inS
∗
⇒
G′

s is in P1 while every rule ins
∗
⇒
G′

t is in

P2. By Claim 3, there is ani ∈ I and ans′ ∈ TΣ,Na such thati
∗
⇒
G

s′ ands= rhs(s′,0). Since every rule

in s
∗
⇒
G′

t is in P2, there is no positionp in s′ such thatλs′(p) = (L,SA,true) for someL ∈ Σ,SA⊆ Na.

Henceπ1(s′) ∈ L(G) by definition ofL(G). But since every rule ins
∗
⇒
G′

t is in P2, it follows that

π1(s′) = t by definition ofP2.

Claims 2 and 4 together show thatL(G) = L(G′). �

The following definitions are quoted from (Fujiyoshi and Kasai, 2000, p. 62). A ranked alphabet is
head-pointing, if it is a tripe (Σ,ρ,h) such that(Σ,ρ) is a ranked alphabet andh is a function fromΣ
to N such that, for eachA ∈ Σ, if ρ(A) ≥ 1 then 1≤ h(A) ≤ ρ(A), otherwiseh(A) = 0. The integer
h(A) is called the head ofA.

Definition 15 Let G = (N,Σ,S,P) be a CFTG such thatN is a head-pointing ranked alphabet. For
n≥ 1, a productionA(x1, . . . ,xn) → t in P is spinal-formedif it satisfies the following conditions:

• There is exactly one leaf int that is labelled byxh(A). The path from the root to that leaf is called
the spine oft, or the spine whent is obvious.

• For a noded ∈ Dt , if d is on the spine andλ(d) = B∈ N with ρ(B) ≥ 1, thend ·h(B) is a node
on the spine.

• Every node labelled by a variable inXn\{xh(A)} is a child of a node on the spine.

A CFTG G = (N,Σ,S,P) is spinal-formedif every productionA(x1, . . . ,xn) → t in P with n ≥ 1 is
spinal-formed.

The intuition behind this definition as well as illustratingexamples can be found in (Fujiyoshi and
Kasai, 2000, p. 63). We will not quote them here, because spinal-formed CFTGs are just an equivalent
form of CFTGs on the way to showing that TAGs can be rendered byMLCFTGs.

Proposition 16 For every footed CFTG there exists an equivalent spinal-formed CFTG.

PROOF. Let G = (N,Σ,S,P) be a footed CFTG.
Define CFTGG′ = (N′,Σ,S,P′) as follows.
SetN1 = {(A,1) | A∈ N>0},
N2 = {(A,k) | A∈ N>0,∃t ∈ rhs(P), p∈ Dt : λt(p) = A, pk∈ spine(t)}, and
N′ = N0∪N1∪N2.

15

For every(A,k) ∈ N1∪N2 seth(A,k) = k (the head of(A,k)).

Define relab :rhs(P) → TN′∪Σ∪X as follows.

D = Dt ,

for eachp∈ D :

λrelab(t)(p) =

(A,k) if λt(p) = A∈ N>0, pk∈ spine(t),
(A,1) if λt(p) = A∈ N>0, p /∈ spine(t),
A if λt(p) = A∈ N0,
f if λt(p) = f ∈ Σ∪X

relab(t) = (D,λrelab(t))

For treest ∈ TN′∪Σ∪X the inverse of relab can be defined by

D = Dt ,

for eachp∈ D :

λrelab−1(t)(p) =

A if λt(p) = (A,k) ∈ N1∪N2,
A if λt(p) = A∈ N0,
f if λt(p) = f ∈ Σ∪X

relab−1(t) = (D,λrelab(t))

Set

P′ = {(A,k)(x1,...,xn) → relab(t) | ∃(A(x1, . . . ,xn) → t) ∈ P,(A,k) ∈ N′} ∪

{A→ relab(t) | ∃(A→ t) ∈ P,A∈ A0}.

GrammarG′ is spinal-formed, as a simple check reveals.

Claim 1: For every treet ∈ TΣ∪N: if S
∗
⇒
G

t then there exists a treet ′ ∈ TΣ∪N′ with S
∗
⇒
G′

t ′ and t =

relab−1(t ′).

Proven by an induction on the length of the derivation oft.
For S

∗
⇒
G

S this is trivially true.

Let S
∗
⇒
G

t. Then there is as∈ TΣ∪N with S
∗
⇒
G

s⇒
G

t. Thus there is aσ ∈ TΣ∪N∪Xk and treesσ1, . . .σk ∈

TΣ∪N and a rule(B(x1, . . .xk) → ξ) ∈ P such thats= σ[B[σ1, . . . ,σk]] andt = σ[ξ[σ1, . . . ,σk]].
By Ind.H., there is a trees′ ∈ TΣ∪N′ with S

∗
⇒
G′

s′ ands= relab−1(s′).

By definition ofP′ there is a rule((B, l)(x1, . . .xk)→ relab(ξ)) ∈ P′. And there is aσ′ ∈ TΣ∪N′∪Xk with
σ = relab−1(σ′) and treesσ′

1, . . .σ′
k ∈ TΣ∪N′ with σ j = relab−1(σ′

j) such thats′ = σ[(B, l)[σ′
1, . . . ,σ′

k]].

Therefores′ ⇒
G′

t ′ = σ′[relab(ξ)[σ′
1, . . . ,σ′

k]] andt = relab−1(t).

The argument forB∈ N0 is even simpler.

Claim 2: For evert treet ∈ TΣ∪N′ : if S
∗
⇒
G′

t thenS
∗
⇒
G

relab−1(t).

Proven by an induction on the length of the derivation oft.
For S

∗
⇒
G′

S this is trivially true.

Let S
∗
⇒
G′

t. Then there is as∈ TΣ∪N′ with S
∗
⇒
G′

s⇒
G′

t. Thus there is aσ ∈ TΣ∪N′∪Xk and treesσ1, . . .σk ∈

16

TΣ∪N′ and a rule((B, l)(x1, . . .xk) → ξ) ∈ P′ such thats= σ[B[σ1, . . . ,σk]] andt = σ1[ξ[σ1, . . . ,σk]].
By Ind.H.,S

∗
⇒
G

relab−1(s).

By definition of P′ there is a rule (B(x1, . . .xk) → relab−1(ξ)) ∈ P. And relab−1(s) =
relab−1(σ)[B[relab−1(σ1), . . . , relab−1(σk)]].
Therefore relab−1(s) ⇒

G′
relab−1(σ)[relab−1(ξ)[relab−1(σ1), . . . , relab−1(σk)]] = relab−1(t).

The argument forB∈ N0 is even simpler.

Claims 1 and 2 together show thatL(G) = L(G′). �

Proposition 17 (Fujiyoshi and Kasai, 2000)For every spinal-formed CFTG there exists an equivalent
MLCFTG.

This is a corollary of Theorem 1 (p. 65) of (Fujiyoshi and Kasai, 2000). To see this, it suffices to
inspect the normal form of Theorem 1 and see that it defines indeed a monadic linear CFTG.

We have now also proven Proposition 7. It was shown in the above Propositons that for every footed
CFTG there exists an equivalent MLCFTG. The inverse direction was shown in Section B in Proposi-
tions 3, 11, and 12.

D A Logical Characterisation

Theorem 18 A tree language is generable by a monadic linear context-free tree grammar iff it is the
two-dimensional yield of an MSO-definable three-dimensional tree language.

PROOF. Rogers (2003) showed in Theorems 5 and 13 that a tree language is generable by a non-
strict TAG iff it is the two-dimensional yield of an MSO-definable three-dimensional tree language.
The theorem is an immediate consequence of Rogers’ result and our Theorem 8. �

17

