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A Landscape of Logics for Finite

Unordered Unranked Trees
STEPHAN KEPSER

Abstract

In this paper, we draw a landscape of the expressive poweverfseé logics over finite
unordered unranked trees. A tree is unordered iff for eactebere is no order on its
children. A tree is unranked iff for each node the numberséitildren is independent of
its label. We compare here the expressive power of logies fftoee non-disjoint areas:
logics related to automata theory, logics from descriptivmplexity theory, and second-
order logics. Several of these logics form natural hieri@scbf expressive power. We will
show several separation results in these hierarchies tiougrgg that the hierarchies are
mostly proper. We also present that the automata logicsnameriparable to the logics
from descriptive complexity theory.
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1.1 Introduction

In this paper, we consider finite labelled unordered unrdriees. A tree is
calledorderediff for each node there is a linear order on the children dof thi
node. A tree is calledinorderediff for each node there is no order on its
children. The two notions are not complementary. But pliyt@dered trees
have so far not attracted any research interest.

A tree isrankediff for each node the number of its children is a function of
its label. More generally, a ranking assigns to each lalfieite set of natural
numbers. Each member of the set is a potential number of obils. We
consider in this paper the unranked case. That means eaehmmdhave an
arbitrary, but finite, number of children, independent & tabel it bears.

Finite unordered unranked trees have many applicationsrimpater sci-
ence. The one that is probably best known comes from sendtated
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database theory. Unordered unranked trees provide thallsotdatabase
model of XML (Abiteboul et al., 2000). Unordered unrankeskis also have
applications in computational linguistics. They can bexsegthe underlying
data structures of dependency treebanks. The dependenctust usually
forms a tree. There exists an ordering on the word level. Bistarder is
not relevant for the dependency structure. Thus the treesrasrdered. This
forms the main motivation for our work. We intend to investig the expres-
sive power of diverse logics as query languages for depaydesebanks.

In this paper we study a large number of logics to define laggsiaf un-
ordered unranked trees and compare their expressive peesmerally speak-
ing, the logics we consider stem from three non-disjoinbardogics re-
lated to automata theory, logics discussed in descriptiveptexity theory,
and second-order logics. The basic logic from automataryhisomonadic
second-order logic. Two extensions of this logic will alsodiscussed. From
the area of descriptive complexity theory we consider

= deterministic transitive closure logic,

= transitive closure logic,

= |east or initial fixed-point logic,

= partial fixed-point logic, and

= infinitary logic with finitely many variables.

We also discuss full second-order logic, its restrictiopuce existential quan-
tification of second-order variables and its extension lopsd-order transi-
tive closure.

Several of these logics form natural hierarchies of exjpreggower. This
is true for the automata logics, the logics from descripteenplexity the-
ory, and second-order logics. We will show numerous sejperaesults in
these hierarchies thus showing that the hierarchies argynposper. We also
present that the automata logics are incomparable to theslfr@m descrip-
tive complexity theory.

This paper is organised as follows. After the definition oft@runordered
unranked trees in the preliminaries we briefly recall therigdins of all log-
ics of this paper in Section 1.3. Section 1.4 provides twoptgnmesults to
start with. Section 1.5 contains the separation of autoiogtas from fixed-
point logics. How to separate the fixed-point logics fromosetorder logics
is shown in Section 1.6. We close the paper with an overvieth@fresults
obtained in Section 1.7. For comparison, we added an appeadtaining a
description of the situation for finite ordered ranked trees

Due to restrictions of space, most formal definitions andespnoofs had
to be omitted from this paper. A technical report contairdhglefinitions and
proofs is obtainable from the authors.



A LANDSCAPE OFLOGICS FORFINITE UNORDEREDUNRANKED TREES/ 3

1.2 Preliminaries

We consider node-labelled finite unordered unranked tieé®e is a finite
digraph with a distinguished node, the root and the proptby for every
node there is a unique path from the root to this node. We atsanae a finite
set/ of node labels.

Formally, atree is given by a tripl¢/, E,A) whereV is a finite, non-empty
set of vertices or nodeg, C V x V is a finite set of edges, adis a mapping
fromV to A. Moreover, there is an € V, the root, such that for each node
v € V there isn € N and nodes/,vs,...,Vy € V with r = vp,vy, = v and
(vi,vit1) € E for all 0 <i < n (existence of a path from the root to every
node). Finally for allv,v' €V, if there aren,m € N, nodesv,Vvs,...,Vh €V,
Uo, U1, .. .,Um € V with V= Vg = Up,Vp = Uy =V and (v, Vi+1) € E for 0 <
i <nand(uj,uj+1) € Efor0<j <mthenn=mandy, =u; forall0<i<n
(uniqueness of paths).

A tree language is a set of trees.

Similar to ordered trees, unordered trees can also be deffedms. This
way of formalising them is useful in the discussions comggeutomata re-
lated logics. We provide it here as an equivalent altereétivthe definition
above. LetM be a set. A multi-set is a functioih: M — N stating for each el-
ement ofM its multiplicity. For a sequena®y, ..., mg € M of not necessarily
different elements frolM we denote{my, ..., m} its multi-set. A multi-set
can also be seen as an unordered sequence.

Based on multi-sets, unordered unranked trees for a gigeatire/\ are
defined as follows. Each € A is an unordered unranked tree.tif. .. tx
are unordered unranked trees dnd A thenL{t;,...,t} is an unordered
unranked tree. The multi-set union is denotedtb Cin N means thai
is a finite sub-multiset o (whereN may also be a set).

1.3 The Logics

The basic logic we consider is first-order logic (denoted.F&@ym the point
of view of logic, trees are particular finite first-order stiures. With every
tree(V,E,\) we associate a first-order structyk& E, (L) ca) such that (v)

iff A(v) =L for everyv € V. Hence we use the following atomic formulae:
E(x,y) denotes the directed edge froafparent) toy (child). AndL(x) ex-
presses that nodeis labelled withL € A.

1.3.1 Automata Related Logics

The logics in this section are logics defined to be equivaketrtain types
of tree automata. In opposite to the case of ordered ranked,tdifferences
in the definition of tree automata lead to differences in egpive power. The
automata and logics definitions that follow are taken frorar(®a and Tal-
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bot, 2005) and (Seidl et al., 2003).

Monadic second-order logic (MSO) is the extension of firsten logic by
set variables and quantification over sets.

The logic Counting MSO, defined by Courcelle (1990), den@®$E0, is
an extension of MSO by predicates that allow modulo countiigets. The
syntax of MSO is extended by atomic formuIHhDd} (X) whereX is a set
variable,i,j € N;j < i. The formuIaModE (X) is true iff X hasj elements
moduloi.

Seidl, Schwentick, and Muscholl (2003) propose anothémgee power-
ful, extension of MSO, namely Presburger MSO (denoted PM$§ name
Presburger refers to the fact that for an arbitrary nodeedslof child nodes
can be restricted by constraints expressed in Presbuiifenatic. An exam-
ple would be to state that there are twice as many child nedetlédL; than
children labelled.,.

The syntax of PMSO is given by the following grammar (quoteshf
(Seidl et al., 2003)):

f = EXXx)|xeS|x/p|fAf]=f]3Ixf]|3IX.f
S = X]|L

p = t=t|t+t=t|pAp|-p|3y.p

t u= [§lyln

f is a PMSO formulaSis a set,p is a Presburger constraint, anis a term.
X € Xp is a first-order variableX € x; is a set variabley € o is a first-order
Presburger variablg; N.xg = 0. L € Ais a node label. The formulgeof x/p
are Presburger-closed, i.e., do not contain free varidies o . Intuitively,
the assertiorx/p means that the children of satisfy constrainp where a
term[S insidep s interpreted as the number of those childrer which are
contained irS. Arithmetic expressions have their natural semantics.

Seidl et al. (2003) also provide an automaton model for PMS&nely
Presburger tree automata (PTA). We explain this automatwteirhere, be-
cause we will use it in subsequent proofs.

Given a finite seQ of states, we consider the canonicalggtof variables
which are indexed by elements @ i.e., 70 = {yq | g € Q}. A Presburger
tree automaton is a quadrupte= (Q,A\,d,F) where

= Qis afinite set of states,

= F C Qisthe set of accepting states,

= Ais the set of node labels, and

= d maps pairgq,L) of states and labels to Presburger constraints with free
variables from the sefq.

The formula¢ = &(q,L) represents there-conditionon the children of a
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node labelled by for the transition into statg where the possible values
of the variableg/, represent the admissible multiplicatives of the s{aten
the children. We introduce a satisfaction relatiga ; q between a treeand

a stateq as follows. Assume that= L({ts,...,t}) andd(q,L) = ¢. Then

t =4 ¢ iff there arek cardinalitiesn;, andk statesp; € Q such that

» tj =4 pjfori <j<k and

» {yp—nl1<j<n} 0.

The languagé.(2) of unordered unranked trees which is accepted by the
automatory is given by

L(a)={t|3qeF t=aq}.

Atree languagé is PMSO-definable iff it is accepted by some Presburger
tree automaton (Seidl et al., 2003).

We also consider a subclass of Presburger constraints,yyamary or-
deringconstraints. An ordering constraint is defined as

p = t<t|pAp|-p
t o= y|n|t+t

There is no existential quantification. An atomic constrairt t’ is called
unary iff it contains only one variable (but potentially seal occurrences
of this one variable). A Presburger ordering constraintited unary iff all
its atomic constraints are unary. Note that a unary comdgtraay contain
several different variables as long as all of its atomic t@iirsts contain only
one variable.

A Presburger tree automaton over unary ordering conssrésntalled a
unary orderingPTA. Boneva and Talbot (2005) showed that a tree language
L is MSO-definable iff there exists a unary ordering PTA thaiegdsL.

On the basis of results by Boneva and Talbot (2005), Cow¢é®90),
Seidl et al. (2003), the following is known about the exprespower of
the different automata logics over unordered unrankedttdere and in the
following, an inclusionA C B means that every tree language definable in
logic A is also definable in logi®. A proper inclusionA C B indicates that
there exist tree languages definabl®@iwhich areundefinablen A.

FO C MSO C CMSOC PMSO.

1.3.2 Transitive-Closure Logics

Transitive closure logic is the extension of FO by transitilosure operators.
This extension is sensible because FO is known to be incapébkpressing
transitive closures. Formally, I&tc N andR a binary relation ovek-tuples



6/ STEPHAN KEPSER
(RC MK x M¥). Then

o Ko mk veo e pk - 6Y), (¥,2) €W
TC(R) ._ﬂ{w [REWC M XM Xy, ze M : 0 (X7 ew }

Deterministictransitive closure is the transitive closure of a deterstioj
i.e., functional relation. For an arbitrary binary relatiB over k-tuples we
define itsdeterministic redudby Rp := {(X,y) € R| VZ: (X,2) e R = y=1Z}.
Now DTC(R) := TC(Rp).

The formulae of TC are defined by adding to first-order logecttansitive
closure operatorT(C):

If ¢ isa TC formulax=x1,...,%1, Y =V1,...,Yn are a subset of the free
variables ofp such thati, j,x #Yyj, ands=s,...,S,t =t1,...,t, are terms,
then[TCxy ¢](S;t) is a TC formula.

For DTC we add the deterministic transitive closure oper#tp isa DTC
formula, thenDTCxy ¢](S;t) is a DTC formula.

A predicate of the formTCxy ¢] ([DTCxy ¢]) is supposed to denote the
(deterministic) transitive closure of the relation defirosdp.

We also consider the special case where the transitiveredsuestricted
to binary relations, i.e., the tuple size is 1. These logresdenoted as MTC
(where M stands fomonadig and MDTC.

We just mention in passing that for every formula in DTC thexests an
equivalent formulaiin TC (see, e.g., (Immerman, 1999)).

1.3.3 Fixed-Point Logics and Infinitary Logics

The concept of adding transitive closure operators to FObeageneralised
to adding fixed-point operators. Indeed, the transitivewte is a particularly
simple type of a fixed-point operator. In this paper, we wdhsider least
fixed-points, inflationary fixed-points and partial fixedipts. More explana-
tion on these logics can be found in (Ebbinghaus and Flung lif®merman,
1999, Libkin, 2004).

LetM be a set. An operator dvi is a mappind- : (M) — O (M). An op-
eratorF is calledmonotoneif X CY impliesF (X) C F(Y), andinflationary,
if X CF(X) forall X,Y e0(M). Monotone operators are known to héwast
fixed-pointgTarski-Knaster-Theorem). Fér: O (M) — O (M) monotone we
define LFRF) = N{X | X =F(X)}.

Inflationary operators also have fixed-points. This factisdito transform
an arbitrary operato® into a fixed-point operator by making it inflationary.
Simply setGing (X) = X UG(X). Now for X° = 0 andX'*! = X' UG(X') set
IFP(G) = P o X'

Finally consider an arbitrary operatér. J (M) — 0 (M) and the sequence
X0 = 0 andX'*! = F(X"). This sequence need not be inflationary. It hence
need not have a fixed-point. Hence we define the partial fix@dtpf F as
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PFRF) = X"if X" =X""1and PFRF) = 0if X" £ X" foralln< 2M,
These operators will now be added to FO in the following wast R be

a relational variable of ariti. For each treé= (V,E,\) the formulad (R, X)

where|X] = k gives rise to an operat® : 0 (VX) — 0 (V¥) defined as

Fo(X) ={VIt = o(X/RV)}.
Now let¢(R X) be a formula wherex] = [t] = k. Then[IFPrx ¢ (R, X)](t)

is a formula of IFP[LFPrx ¢ (R, X)](t) is a formula of LFP (assuminigto be
positive ind), and[PFR:x ¢ (R, X)](t) is a formula of PFP. Note that Gurevich
and Shelah (1986) showed IFP = LFP.

The infinitary logic L« is the extension of FO by arbitrary infinite dis-
junctions and conjunctions. ¥ is a set of formulae thely W and AW are
formulae. Because,, is known to be much too powerful, we are interested
here in a particular sublogic af.,, hamely one in which each formula con-
tains onlyfinitely many different variables.

The class ofz«, formulae that use at mostdistinct variables will be
denotedc X . And the finite variable infinitary logics 2, is defined by

Lé,=J L&,
keN

This logic is interesting because it comprises the fixed tploigics LFP,
IFP, and PFP, i.e., every class of finite structures defin@btene of these
logics is definable i g,,. The following diagram shows the expressive power
of the logics defined in the last two subsections on finite deced unranked
trees. The inclusions are a consequence of the definitiotmedbgics.

DTC ¢ TC <C LFP C PFP C L&,
Ul Ul Ul
MDTC C MTC < MLFP

Furthermore, Dawar et al. (1995) showed that KER 2,

1.3.4 Second-Order Logics

In this section we introduce three variants of second-dodges. Full second-
order logic (denoted SO) is the extension of FO by arbitralgtion variables
and arbitrary (second-order) quantification over thesmbées.

Existential second-order logic (ESO) is a restriction of. ®OESO all
second-order variables are globally existentially gt They are not in-
volved in any quantifier alternation. Hence an ESO-formolaststs of a pre-
fix of existential second-order quantifications only and afB@nula with
SO-variables, but without SO-quantification.

The third logic of this section is SO with second-order titwes clo-
sure, denoted SO(TC). It was introduced by Immerman (1998)lagic that
strongly captures PSPACE, i.e., the logic and the completitss have the
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same expressive power on arbitrary (finite) structuresjusbtordered struc-
tures. We will only make use of this logic as a logic that sglgrcaptures
PSPACE. Hence we will not give a full definition, rather reflee interested
reader to the given reference.

Second-order logics are certainly full logics in their ovight. But they
also have a strong connection to complexity theory. Acyualescriptive
complexity theory was initiated by Fagin’s result showihgtt ESO strongly
captures NPTIME (Fagin, 1975). The logic SO strongly cagguPH, the
polynomial hierarchy, and SO(TC) strongly captures PSP&&E, e.g., (Im-
merman, 1999)).

It follows immediately from the definitions that

FOC ESOC SOC SO(TC).

Whether any of these inclusions are strict are famous opellgms in
complexity theory.

1.3.5 Overview

We close this section with an overview over what is known altoeiexpres-
sive power of the different logics defined above on finite aleoed unranked
trees (see Figure 1).

Let us explain those parts of Figure 1 that have not yet besiiigd pro-
ceeding from bottom to top.

MLFP C MSO Every monadic least fixed point is expressible in MSO.
See (Ebbinghaus and Flum, 1995).

TC C SO(TC) On ordered structures, TC captures NLOGSPACE. The proof
of this theorem also shows that TC NLOGSPACE on arbitrary
structures. Since SO(TC) strongly captures PSPACE = NP&PAE
proper inclusion follows from the space hierarchy theorem.

PMSO C ESO Seidl et al. (2003) show that any PMSO definable tree lan-
guage is recognised in (deterministic) linear time. Sin&®Etrongly
captures NPTIME, the inclusion follows.

LFP C ESO On ordered structures, LFP captures PTIME. The proof of this
theorem also shows that LKP PTIME on arbitrary structures. Since
ESO strongly captures NPTIME, the inclusion follows.

1.4 Two Initial Results

We start with two smaller results. The first one states thahekie weakest
logic extending FO, namely MDTC, is truly more powerful tHad.

Theorem 1 The logicMDTC is strictly more powerful tharO over un-
ordered unranked trees.



A LANDSCAPE OFLOGICS FORFINITE UNORDEREDUNRANKED TREES/ 9

SO(TC) L3,
so
|
ESO PFP
/ \
PMSO LF
|
CMSO
|
MSO
MLFP T
]
MTC DTC
|
MDTC
o

FIGURE 1 Logics for finite unordered unranked trees: the base.
D— indicates a proper inclusion.

A tree language undefinable in FO, but definable in MDTC is ohere
each leaf node is at an even depth level. The second resuéeconthe ex-
pressive power of MSO and MLFP.

Theorem 2 The logicsMSO and MLFP have the same expressive power
over unordered unranked trees.

It can be shown that an accepting run of a unary ordering PTAbza
logically rendered in MLFP. This way the more important diren of the
theorem is proven. That MSO can express monadic least fixetsgs men-
tioned just above.

1.5 Separating Automata Logics and Fixed-Point Logics

The aim of this section is to separate automata logics framsitive closure
logics and fixed-point logics. This is done in two subpantstte first one
we present a tree language that is DTC-definable, but not PMSiDable.
In the second part we present a tree language that is MSQOabédirbut not
TC-definable.
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1.5.1 ADTC-Definable Tree Language

In this section we present a tree language which is DTC-dafnaut
not PMSO-definable (and therefore neither CMSO-definable M8O-
definable). It is a variation of a tree language defined by diadd Kepser
(2006). We have the following node labdlsg wheref labels the rootg is
the label for all other nodes. The language is defindgias { f{g",g"} | n€
NT}. Itis the language of twg-chains of equal length below the root.
The languagé; is definable in DTC as follows. Let
Root(x) := —3yE(y,Xx)
define the root of a tree and
Leaf(x) := —~3yE(x,y)
define a leaf in the tree. The formula
OneCHx) := 3yE(x,Y) AVZ(E(X,2) — z=Y)
expresses that nodehas exactly one child. Consider the following predicate
P:
[DTC(Y1,Y3)a(Y2-,Y4) E(y1,y2) AE(ys,Y4)]

which states that, is at the same distance fromasys fromys. Let¢(x1,X2)
be the formula

VY1, Y2 P(X1,X2,¥1,¥2) = (9(y1) Ag(y2) A
(Leaf(y1) ALeaf(y2)) V
(OneCHy1) A OneCHhys»))

expressing that i is at the same distance froxa asy, from x, then both
are labelled withg and either both are leaves or both have exactly one child.
Now the tree language is given by

3r,x1,%x2 Root(r) A f(r) AE(r,x1) AE(r,%2) Ag(X1) A g(X2) A
X1 £ X AVZE(r,2) — (z=X1VZ=X2) A
¢(X17X2)
The formula says that is the root, labelledi and thatr has exactly two
childrenx; andx, both labelledy and¢ holds forx; andxs.

It is known that this tree languagenst MSO-definable. It can be shown
that it is not even PMSO-definable. The proof method is a wadéthe proof
for the pumping lemma for recognisable tree languages addptunordered
unranked trees and PTA.

Proposition 3 The tree language iis DTC-definable, but i:iot PMSQ
definable.

PROOF  Supposez = (Q,A,d,F) is a tree automaton acceptihg and
k= |Q| is the number of states. Let> k. Consider the tree= f{g™,g"} €
L1 and in particular its subtreg™. Sincem > k there must be a treé = g'1
a non-empty context = g'2{e} and a context’ = g'3{e} and a state| € Q
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FIGURE2 Separating automata logics from fixed-point logics.

such that; +12+13 =mandg™ = C'{C{t’} } and both the root af andC{t’}
receive statg in an accepting run far.
Thereforeu = f{g™,C'{C{C{t'}}}} is accepted byr because bot@{t'}
andC{C{t'}} receive state| in an accepting run.
Butu ¢ L;. O
The results of this subsection are depicted in Figure 2.¢oigi the green
area are capable of definihg, whereas logics in the red area are not.
Theorem 4 The following inclusions arstrict

= MDTC is strictly less powerful tha®TC.

= MTC is strictly less powerful thaif C.

= MLFP is strictly less powerful thah.FP.

= PMSOis strictly less powerful than ESO.

1.5.2 An MSO-Definable Tree Language

Consider the following tree language. It is originally definn (Ebbinghaus
and Flum, 1995) as a class of finite graphs. All leaves arell&beither
with 0 or 1. All internal nodes are labelled wiBhfor blank, some void node
label that is there only because we demand all nodes to bkddb€he leaf



12 / STEPHAN KEPSER

labels 0 and 1 are interpreted as false and true (resp.)naiteodes function
as gates. They are set to true iff exactly one child node isoslse. We
consider the class of trees whose root node is evaluateddo tr

Formally we define two tree languages inductively as follolaet A =
{0,1,B} be a set of labels. The tree languagesndL; are the smallest sets
such that

0 € Lsg
1 € Ly
B(L/) c Lz wherel’ Cmfin L2
B({t}wL') € Lowheret e LzandL’ CmyinlL2
B({t,t}wL'wL”) e Lzwheret,t’ €Ls,L’ CrfinlLs, andL” Cmin Lo.

The tree languagk; is recognised by the following Presburger tree au-
tomatona = ({q,qr },A, 8, {c}) where
0(0,g¢) = true 5(0,q) = false
o(1,qf) = false (L) = true
3(B.ar) = Vg =0Vyy; =2 3Bk) = yg =1
Hencel, is PMSO-definable. A close inspection &freveals that all con-

straints in the transitions are unary ordering constraidencel, is even
MSO-definable.

Proposition 5 There exists a tree language whichNkSO-definable, but is
not TG-definable.

The proof that the tree languade is not TC-definable is an applica-
tion of results by Grohe (1994), reported in (Ebbinghaus Elun, 1995,
Chap. 7.6.3).

The results of this subsection are depicted in Figure 3.digi the green
area are capable of definihg, whereas logics in the red area are not.

Theorem 6 The following inclusions arstrict.

= MTC is strictly less powerful thabLFP and MSO.
= TCis strictly less powerful thah FP.

Theorem 7 The logics(P)MSOand TC are incomparable over the class of
finite unordered unranked trees.

1.6 Separating Fixed-Point Logics and Second-Order Logics

The main result of this section is that there is a tree langsagfinable in
CMSO that is not. & -definable. We use the well known fact th&f, is not
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FIGURE 3 Separating automata logics from fixed-point logics.

particularly good at counting.

Let A = {A}. Define the tree languagés = {(V,E,A) | V| =

2nfor somen € N} as the set of all tree with an even number of nodes (where

each node is labelled with). We first show that 4 is CMSO-definable. The
following formula defined 4.

IX(Vx.x € X AModd (X))

We will next show that 4 is not£ %, -definable using infinite pebble games.
For the definition of this type of games, the reader is retetwee.g., (Libkin,
2004, Chap. 11.2). For a natural numketefine2(, to be
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andBy to be

k+1

If kis even therR( has an odd number of nodes whils has an even
number of nodes. Ik is odd therR(y has an even number of nodes whilg
has an odd number of nodes.

Lemma 8 The duplicator has a winning strategy for the infinite pelgdene
PG? (2, By) for every ke N.

PROOF  Let(a,...,a) — (b1,...,bx) be a partial isomorphism between

2 andBy. We assume no two pebbles are ever placed on the same node, be-

cause doing so leads to a game with less thpebbles. We also assume that

the spoiler never leaves a pebble in its place when makingve nbecause if

he did, the duplicator would do the same and the move wouldlzk v
Assume the spoiler choos8% and to reposition pebblg We distinguish

the following cases.

Case 1: There is a pebble on the roof.

Since(ay,...,a) — (b1,...,by) is a partial isomorphism, there islawith

1 < I <ksuch thaty is the pebble on the root &y anda is a pebble on the

root of 2.

Case 1.1j =1, i.e., the spoiler chooses the pebble on the root.

Since there is now no pebble on the roo%, the substructurfos, ..., by) is

now a discrete structure kfelements. Sinc#y hask leaves and one pebble is

placed on the root o, there must be an unpebbled leaRaf The duplicator

places hig-th pebble on this leaf. Noay, ... ,ax) is also a discrete structure

and(ay,...,a) — (b1,...,by) is a partial isomorphism.

Case 1.2j #1, i.e., the spoiler chooses a pebble on one of the leaves.

The spoiler moves pebbjeonto an unpebbled leaf. The resulting substructure

induced by(by, ..., by) is obviously isomorphic to the one before the move.

Actually, it is By_» = 2_1. Since the substructure induced &y, ...,ax)

is alsolk_1, the duplicator leaves all his pebbles in place émd. . .,ay) —

(b1,...,by) is a partial isomorphism.

Case 2: There is no pebble on the roof&.

Both (by,...,bx) and(ay,...,ax) are discrete structures.

Case 2.1: The spoiler moves pebblento the root ofBy.

The induced structure dbs,...,by) is now By_» = Ax_1. The duplicator

mimics this move moving his pebbjeonto the root oRl,. Now the induced

structure ofay, ..., ax) is alsox_; and(ay, . ..,a) — (bs,...,byx) is a partial
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FIGURE4 Separating fixed-point logics from second-order logics.

isomorphism.
Case 2.2: The spoiler moves pebplento an unpebbled leaf &y.
Then(by,...,by) remains a discrete structure. Thus it is already isomorphic
to (as,...,ak), and the duplicator leaves all his pebbles in place.

The argument for the situation where the spoiler choose®teeran struc-
ture®ly is analogous, actually simpler. O
The lemma implies thally = ¢ iff By = ¢ for everyk € N and¢ € X,

Proposition 9 The tree languaged.of trees with an even number of nodes is
CMSO-definable, but isot L& -definable.

PROOF  Supposéswerery -definable, i.e, there were a formdlae £&,
that defined_4. By definition of &, there is & € N such thath € X . By
the above lemma, eith@f = ¢ andBy = ¢ or Ak ¥ ¢ andBy # ¢. But one
of Ay, Bk has an even number of nodes, while the other has an odd number
of nodes. O

The results of this section are summarised in Figure 4. lsoigithe green
area can definks whereas logics in the red one cannot.

Theorem 10 The following inclusions arstrict
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FIGURE5 Logics for finite unordered unranked trees.
O— indicates a proper inclusion.

= PFPis strictly less powerful thaisO(TC)
* LFPisstrictly less powerful than ESO.
= MSOis strictly less powerful thalCMSO.

The last result is already known. We just provided an altéregroof of
the result.

1.7 Conclusion

Figure 5 depicts a landscape of the expressive power ofréiftdogics for
finite unordered unranked trees. This includes the relgtignbetween PFP
and &, which we have not been able to present here due to spacie+estr
tions. As one can see, most inclusions between differemtsdgrn out to be
proper.

An important result one can see from this picture is that titeraata log-
ics are largely incomparable to the logics stemming frontdptve com-
plexity theory (TC, LFP, PFP).

Most of the remaining open questions are directly relatetiffiwult open
problems in complexity theory. This is true for the secomdeo logics, but
also concerns the transitive closure logics. Also, the rsgjoa of LFP from
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FIGURE6 Logics for finite ordered ranked trees.
D— indicates a proper inclusion.

PFP amounts to the separation of PTIME from PSPACE by theeRbitl-
Vianu theorem (Abiteboul and Vianu, 1995).

Appendix: The Situation for Finite Ordered Ranked Trees

For comparison we also show what is known about the expegsiwer of
the above mentioned logics on finite ordered ranked treest fleestions on
whether or notinclusions are proper are open. This is piglhte to the fact
that they are directly related to famous open problems issital complexity
theory. Figure 6 summarises the results.

There are only few known non-trivial results of proper irgttn. Kolaitis
and Vardi (1992) showed that PEP %, . The proper inclusion TC. PFP
follows from the space hierarchy theorem. Tiede and Kep&0&) showed
that MSOC DTC. Recently, ten Cate and Segoufin (2008) were able to show
that also MTCC. MSO.
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