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A Landscape of Logics for Finite
Unordered Unranked Trees
STEPHAN KEPSER

Abstract
In this paper, we draw a landscape of the expressive power of diverse logics over finite
unordered unranked trees. A tree is unordered iff for each node there is no order on its
children. A tree is unranked iff for each node the number of its children is independent of
its label. We compare here the expressive power of logics from three non-disjoint areas:
logics related to automata theory, logics from descriptivecomplexity theory, and second-
order logics. Several of these logics form natural hierarchies of expressive power. We will
show several separation results in these hierarchies thus showing that the hierarchies are
mostly proper. We also present that the automata logics are incomparable to the logics
from descriptive complexity theory.
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1.1 Introduction
In this paper, we consider finite labelled unordered unranked trees. A tree is
calledorderediff for each node there is a linear order on the children of this
node. A tree is calledunorderediff for each node there is no order on its
children. The two notions are not complementary. But partially ordered trees
have so far not attracted any research interest.

A tree isrankediff for each node the number of its children is a function of
its label. More generally, a ranking assigns to each label afiniteset of natural
numbers. Each member of the set is a potential number of childnodes. We
consider in this paper the unranked case. That means each node may have an
arbitrary, but finite, number of children, independent of the label it bears.

Finite unordered unranked trees have many applications in computer sci-
ence. The one that is probably best known comes from semi-structured
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database theory. Unordered unranked trees provide the so-called database-
model of XML (Abiteboul et al., 2000). Unordered unranked trees also have
applications in computational linguistics. They can be seen as the underlying
data structures of dependency treebanks. The dependency structure usually
forms a tree. There exists an ordering on the word level. But this order is
not relevant for the dependency structure. Thus the trees are unordered. This
forms the main motivation for our work. We intend to investigate the expres-
sive power of diverse logics as query languages for dependency treebanks.

In this paper we study a large number of logics to define languages of un-
ordered unranked trees and compare their expressive power.Generally speak-
ing, the logics we consider stem from three non-disjoint areas: logics re-
lated to automata theory, logics discussed in descriptive complexity theory,
and second-order logics. The basic logic from automata theory is monadic
second-order logic. Two extensions of this logic will also be discussed. From
the area of descriptive complexity theory we consider

. deterministic transitive closure logic,. transitive closure logic,. least or initial fixed-point logic,. partial fixed-point logic, and. infinitary logic with finitely many variables.

We also discuss full second-order logic, its restriction topure existential quan-
tification of second-order variables and its extension by second-order transi-
tive closure.

Several of these logics form natural hierarchies of expressive power. This
is true for the automata logics, the logics from descriptivecomplexity the-
ory, and second-order logics. We will show numerous separation results in
these hierarchies thus showing that the hierarchies are mostly proper. We also
present that the automata logics are incomparable to the logics from descrip-
tive complexity theory.

This paper is organised as follows. After the definition of finite unordered
unranked trees in the preliminaries we briefly recall the definitions of all log-
ics of this paper in Section 1.3. Section 1.4 provides two simple results to
start with. Section 1.5 contains the separation of automatalogics from fixed-
point logics. How to separate the fixed-point logics from second-order logics
is shown in Section 1.6. We close the paper with an overview ofthe results
obtained in Section 1.7. For comparison, we added an appendix containing a
description of the situation for finite ordered ranked trees.

Due to restrictions of space, most formal definitions and some proofs had
to be omitted from this paper. A technical report containingall definitions and
proofs is obtainable from the authors.
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1.2 Preliminaries

We consider node-labelled finite unordered unranked trees.A tree is a finite
digraph with a distinguished node, the root and the propertythat for every
node there is a unique path from the root to this node. We also assume a finite
setΛ of node labels.

Formally, a tree is given by a triple(V,E,λ) whereV is a finite, non-empty
set of vertices or nodes,E ⊆V×V is a finite set of edges, andλ is a mapping
from V to Λ. Moreover, there is anr ∈ V, the root, such that for each node
v ∈ V there isn ∈ N and nodesv0,v1, . . . ,vn ∈ V with r = v0,vn = v and
(vi ,vi+1) ∈ E for all 0 ≤ i < n (existence of a path from the root to every
node). Finally for allv,v′ ∈V, if there aren,m∈ N, nodesv0,v1, . . . ,vn ∈V,
u0,u1, . . . ,um ∈ V with v = v0 = u0,vn = um = v′ and(vi ,vi+1) ∈ E for 0 ≤
i < n and(u j ,u j+1) ∈ E for 0≤ j < m thenn= mandvi = ui for all 0≤ i ≤ n
(uniqueness of paths).

A tree language is a set of trees.
Similar to ordered trees, unordered trees can also be definedas terms. This

way of formalising them is useful in the discussions concering automata re-
lated logics. We provide it here as an equivalent alternative to the definition
above. LetM be a set. A multi-set is a functionf : M → N stating for each el-
ement ofM its multiplicity. For a sequencem1, . . . ,mk ∈ M of not necessarily
different elements fromM we denote{m1, . . . ,mk} its multi-set. A multi-set
can also be seen as an unordered sequence.

Based on multi-sets, unordered unranked trees for a given signatureΛ are
defined as follows. EachL ∈ Λ is an unordered unranked tree. Ift1, . . . ,tk
are unordered unranked trees andL ∈ Λ then L{t1, . . . ,tk} is an unordered
unranked tree. The multi-set union is denoted by⊎. M ⊆m f in N means thatM
is a finite sub-multiset ofN (whereN may also be a set).

1.3 The Logics

The basic logic we consider is first-order logic (denoted FO). From the point
of view of logic, trees are particular finite first-order structures. With every
tree(V,E,λ) we associate a first-order structure(V,E,(L)L∈Λ) such thatL(v)
iff λ(v) = L for everyv ∈ V. Hence we use the following atomic formulae:
E(x,y) denotes the directed edge fromx (parent) toy (child). And L(x) ex-
presses that nodex is labelled withL ∈ Λ.

1.3.1 Automata Related Logics

The logics in this section are logics defined to be equivalentto certain types
of tree automata. In opposite to the case of ordered ranked trees, differences
in the definition of tree automata lead to differences in expressive power. The
automata and logics definitions that follow are taken from (Boneva and Tal-
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bot, 2005) and (Seidl et al., 2003).
Monadic second-order logic (MSO) is the extension of first-order logic by

set variables and quantification over sets.
The logic Counting MSO, defined by Courcelle (1990), denotedCMSO, is

an extension of MSO by predicates that allow modulo countingof sets. The
syntax of MSO is extended by atomic formulaeModi

j(X) whereX is a set
variable,i, j ∈ N, j < i. The formulaModi

j(X) is true iff X has j elements
moduloi.

Seidl, Schwentick, and Muscholl (2003) propose another, yet more power-
ful, extension of MSO, namely Presburger MSO (denoted PMSO). The name
Presburger refers to the fact that for an arbitrary node subsets of child nodes
can be restricted by constraints expressed in Presburger arithmetic. An exam-
ple would be to state that there are twice as many child nodes labelledL1 than
children labelledL2.

The syntax of PMSO is given by the following grammar (quoted from
(Seidl et al., 2003)):

f ::= E(x,x) | x∈ S| x/p | f ∧ f | ¬ f | ∃x. f | ∃X. f

S ::= X | L

p ::= t = t | t + t = t | p∧ p | ¬p | ∃y.p

t ::= [S] | y | n

f is a PMSO formula,S is a set,p is a Presburger constraint, andt is a term.
x∈ X0 is a first-order variable,X ∈ X1 is a set variable.y∈ Y is a first-order
Presburger variable,Y ∩X0 = /0. L∈ Λ is a node label. The formulaep of x/p
are Presburger-closed, i.e., do not contain free variablesfrom Y . Intuitively,
the assertionx/p means that the children ofx satisfy constraintp where a
term[S] insidep is interpreted as the number of those children ofx which are
contained inS. Arithmetic expressions have their natural semantics.

Seidl et al. (2003) also provide an automaton model for PMSO,namely
Presburger tree automata (PTA). We explain this automaton model here, be-
cause we will use it in subsequent proofs.

Given a finite setQ of states, we consider the canonical setYQ of variables
which are indexed by elements inQ, i.e.,YQ = {yq | q ∈ Q}. A Presburger
tree automaton is a quadrupleA = (Q,Λ,δ,F) where

. Q is a finite set of states,. F ⊆ Q is the set of accepting states,. Λ is the set of node labels, and. δ maps pairs(q,L) of states and labels to Presburger constraints with free
variables from the setYQ.

The formulaϕ = δ(q,L) represents thepre-conditionon the children of a
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node labelled byL for the transition into stateq where the possible values
of the variablesyp represent the admissible multiplicatives of the statep on
the children. We introduce a satisfaction relationt |=A q between a treet and
a stateq as follows. Assume thatt = L({t1, . . . ,tk}) andδ(q,L) = ϕ. Then
t |=A ϕ iff there arek cardinalitiesn j , andk statesp j ∈ Q such that

. t j |=A p j for i ≤ j ≤ k, and

. {yp j 7→ n j | 1≤ j ≤ n} |= ϕ.

The languageL(A ) of unordered unranked trees which is accepted by the
automatonA is given by

L(A ) = {t | ∃q∈ F : t |=A q}.

A tree languageL is PMSO-definable iff it is accepted by some Presburger
tree automaton (Seidl et al., 2003).

We also consider a subclass of Presburger constraints, namely unary or-
deringconstraints. An ordering constraint is defined as

p ::= t ≤ t | p∧ p | ¬p

t ::= y | n | t + t

There is no existential quantification. An atomic constraint t ≤ t ′ is called
unary iff it contains only one variable (but potentially several occurrences
of this one variable). A Presburger ordering constraint is called unary iff all
its atomic constraints are unary. Note that a unary constraint may contain
several different variables as long as all of its atomic constraints contain only
one variable.

A Presburger tree automaton over unary ordering constraints is called a
unary orderingPTA. Boneva and Talbot (2005) showed that a tree language
L is MSO-definable iff there exists a unary ordering PTA that acceptsL.

On the basis of results by Boneva and Talbot (2005), Courcelle (1990),
Seidl et al. (2003), the following is known about the expressive power of
the different automata logics over unordered unranked trees. Here and in the
following, an inclusionA ⊆ B means that every tree language definable in
logic A is also definable in logicB. A proper inclusionA ( B indicates that
there exist tree languages definable inB which areundefinablein A.

FO( MSO( CMSO( PMSO.

1.3.2 Transitive-Closure Logics

Transitive closure logic is the extension of FO by transitive closure operators.
This extension is sensible because FO is known to be incapable of expressing
transitive closures. Formally, letk ∈ N andR a binary relation overk-tuples
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(R⊆ Mk×Mk). Then

TC(R) :=
\

{

W | R⊆W ⊆ Mk×Mk,∀x̄, ȳ, z̄∈ Mk :
(x̄, ȳ),(ȳ, z̄) ∈W
=⇒ (x̄, z̄) ∈W

}

.

Deterministictransitive closure is the transitive closure of a deterministic,
i.e., functional relation. For an arbitrary binary relation R over k-tuples we
define itsdeterministic reductby RD := {(x̄, ȳ)∈R| ∀z̄: (x̄, z̄)∈R =⇒ ȳ= z̄}.
Now DTC(R) := TC(RD).

The formulae of TC are defined by adding to first-order logic the transitive
closure operator (TC):

If ϕ is a TC formula, ¯x = x1, . . . ,xn, ȳ = y1, . . . ,yn are a subset of the free
variables ofϕ such that∀i, j,xi 6= y j , ands̄= s1, . . . ,sn, t̄ = t1, . . . ,tn are terms,
then[TCx̄,ȳ ϕ](s̄, t̄) is a TC formula.

For DTC we add the deterministic transitive closure operator. If ϕ is a DTC
formula, then[DTCx̄,ȳ ϕ](s̄, t̄) is a DTC formula.

A predicate of the form[TCx̄,ȳ ϕ] ([DTCx̄,ȳ ϕ]) is supposed to denote the
(deterministic) transitive closure of the relation definedby ϕ.

We also consider the special case where the transitive closure is restricted
to binary relations, i.e., the tuple size is 1. These logics are denoted as MTC
(where M stands formonadic) and MDTC.

We just mention in passing that for every formula in DTC thereexists an
equivalent formula in TC (see, e.g., (Immerman, 1999)).

1.3.3 Fixed-Point Logics and Infinitary Logics

The concept of adding transitive closure operators to FO canbe generalised
to adding fixed-point operators. Indeed, the transitive closure is a particularly
simple type of a fixed-point operator. In this paper, we will consider least
fixed-points, inflationary fixed-points and partial fixed-points. More explana-
tion on these logics can be found in (Ebbinghaus and Flum, 1995, Immerman,
1999, Libkin, 2004).

Let M be a set. An operator onM is a mappingF :℘(M)→℘(M). An op-
eratorF is calledmonotone, if X ⊆Y impliesF(X)⊆ F(Y), andinflationary,
if X ⊆F(X) for all X,Y∈℘(M). Monotone operators are known to haveleast
fixed-points(Tarski-Knaster-Theorem). ForF :℘(M)→℘(M) monotone we
define LFP(F) =

T

{X | X = F(X)}.
Inflationary operators also have fixed-points. This fact is used to transform

an arbitrary operatorG into a fixed-point operator by making it inflationary.
Simply setGinfl(X) = X∪G(X). Now for X0 = /0 andXi+1 = Xi ∪G(Xi) set
IFP(G) =

S∞
i=0Xi .

Finally consider an arbitrary operatorF :℘(M)→℘(M) and the sequence
X0 = /0 andXi+1 = F(Xi). This sequence need not be inflationary. It hence
need not have a fixed-point. Hence we define the partial fixed-point of F as
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PFP(F) = Xn if Xn = Xn+1 and PFP(F) = /0 if Xn 6= Xn+1 for all n≤ 2|M|.
These operators will now be added to FO in the following way. Let R be

a relational variable of arityk. For each treet = (V,E,λ) the formulaϕ(R, x̄)
where|x̄| = k gives rise to an operatorFϕ :℘(Vk) →℘(Vk) defined as

Fϕ(X) = {v̄ | t |= ϕ(X/R, v̄)}.

Now let ϕ(R, x̄) be a formula where|x̄| = |t̄| = k. Then[IFPR,x̄ ϕ(R, x̄)](t̄)
is a formula of IFP,[LFPR,x̄ ϕ(R, x̄)](t̄) is a formula of LFP (assumingR to be
positive inϕ), and[PFPR,x̄ ϕ(R, x̄)](t̄) is a formula of PFP. Note that Gurevich
and Shelah (1986) showed IFP = LFP.

The infinitary logicL∞ω is the extension of FO by arbitrary infinite dis-
junctions and conjunctions. IfΨ is a set of formulae then

W

Ψ and
V

Ψ are
formulae. BecauseL∞ω is known to be much too powerful, we are interested
here in a particular sublogic ofL∞ω, namely one in which each formula con-
tains onlyfinitelymany different variables.

The class ofL∞ω formulae that use at mostk distinct variables will be
denotedL k

∞ω. And the finite variable infinitary logicsL ω
∞ω is defined by

L ω
∞ω =

[

k∈N

L k
∞ω.

This logic is interesting because it comprises the fixed point logics LFP,
IFP, and PFP, i.e., every class of finite structures definablein one of these
logics is definable inL ω

∞ω. The following diagram shows the expressive power
of the logics defined in the last two subsections on finite unordered unranked
trees. The inclusions are a consequence of the definitions ofthe logics.

DTC ⊆ TC ⊆ LFP ⊆ PFP ⊆ L ω
∞ω

⊆ ⊆ ⊆

MDTC ⊆ MTC ⊆ MLFP

Furthermore, Dawar et al. (1995) showed that LFP( L ω
∞ω.

1.3.4 Second-Order Logics

In this section we introduce three variants of second-orderlogics. Full second-
order logic (denoted SO) is the extension of FO by arbitrary relation variables
and arbitrary (second-order) quantification over these variables.

Existential second-order logic (ESO) is a restriction of SO. In ESO all
second-order variables are globally existentially quantified. They are not in-
volved in any quantifier alternation. Hence an ESO-formula consists of a pre-
fix of existential second-order quantifications only and a FO-formula with
SO-variables, but without SO-quantification.

The third logic of this section is SO with second-order transitive clo-
sure, denoted SO(TC). It was introduced by Immerman (1999) as a logic that
strongly captures PSPACE, i.e., the logic and the complexity class have the
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same expressive power on arbitrary (finite) structures, notjust ordered struc-
tures. We will only make use of this logic as a logic that strongly captures
PSPACE. Hence we will not give a full definition, rather referthe interested
reader to the given reference.

Second-order logics are certainly full logics in their own right. But they
also have a strong connection to complexity theory. Actually, descriptive
complexity theory was initiated by Fagin’s result showing that ESO strongly
captures NPTIME (Fagin, 1975). The logic SO strongly captures PH, the
polynomial hierarchy, and SO(TC) strongly captures PSPACE(see, e.g., (Im-
merman, 1999)).

It follows immediately from the definitions that

FO( ESO⊆ SO⊆ SO(TC).

Whether any of these inclusions are strict are famous open problems in
complexity theory.

1.3.5 Overview

We close this section with an overview over what is known about the expres-
sive power of the different logics defined above on finite unordered unranked
trees (see Figure 1).

Let us explain those parts of Figure 1 that have not yet been justified pro-
ceeding from bottom to top.

MLFP ⊆ MSO Every monadic least fixed point is expressible in MSO.
See (Ebbinghaus and Flum, 1995).

TC ( SO(TC) On ordered structures, TC captures NLOGSPACE. The proof
of this theorem also shows that TC⊆ NLOGSPACE on arbitrary
structures. Since SO(TC) strongly captures PSPACE = NPSPACE, the
proper inclusion follows from the space hierarchy theorem.

PMSO ⊆ ESO Seidl et al. (2003) show that any PMSO definable tree lan-
guage is recognised in (deterministic) linear time. Since ESO strongly
captures NPTIME, the inclusion follows.

LFP ⊆ ESO On ordered structures, LFP captures PTIME. The proof of this
theorem also shows that LFP⊆ PTIME on arbitrary structures. Since
ESO strongly captures NPTIME, the inclusion follows.

1.4 Two Initial Results

We start with two smaller results. The first one states that even the weakest
logic extending FO, namely MDTC, is truly more powerful thanFO.

Theorem 1 The logicMDTC is strictly more powerful thanFO over un-
ordered unranked trees.
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SO(TC) L ω
∞ω

SO

ESO PFP

PMSO LFP

CMSO

MSO

MLFP TC

MTC DTC

MDTC

FO

FIGURE 1 Logics for finite unordered unranked trees: the base.
⊃— indicates a proper inclusion.

A tree language undefinable in FO, but definable in MDTC is one where
each leaf node is at an even depth level. The second result concerns the ex-
pressive power of MSO and MLFP.

Theorem 2 The logicsMSO and MLFP have the same expressive power
over unordered unranked trees.

It can be shown that an accepting run of a unary ordering PTA can be
logically rendered in MLFP. This way the more important direction of the
theorem is proven. That MSO can express monadic least fixed points is men-
tioned just above.

1.5 Separating Automata Logics and Fixed-Point Logics

The aim of this section is to separate automata logics from transitive closure
logics and fixed-point logics. This is done in two subparts. In the first one
we present a tree language that is DTC-definable, but not PMSO-definable.
In the second part we present a tree language that is MSO-definable, but not
TC-definable.
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1.5.1 A DTC-Definable Tree Language

In this section we present a tree language which is DTC-definable but
not PMSO-definable (and therefore neither CMSO-definable nor MSO-
definable). It is a variation of a tree language defined by Tiede and Kepser
(2006). We have the following node labelsf ,g where f labels the root,g is
the label for all other nodes. The language is defined asL1 = { f{gn,gn} | n∈
N+}. It is the language of twog-chains of equal length below the root.

The languageL1 is definable in DTC as follows. Let
Root(x) := ¬∃yE(y,x)

define the root of a tree and
Lea f(x) := ¬∃yE(x,y)

define a leaf in the tree. The formula

OneCh(x) := ∃yE(x,y)∧∀z(E(x,z) → z= y)

expresses that nodex has exactly one child. Consider the following predicate
P:

[DTC(y1,y3),(y2,y4) E(y1,y2)∧E(y3,y4)]

which states thaty2 is at the same distance fromy1 asy4 from y3. Letϕ(x1,x2)
be the formula

∀y1,y2 P(x1,x2,y1,y2) → (g(y1)∧g(y2) ∧
(Lea f(y1)∧Lea f(y2)) ∨
(OneCh(y1)∧OneCh(y2))

expressing that ify1 is at the same distance fromx1 asy2 from x2 then both
are labelled withg and either both are leaves or both have exactly one child.
Now the tree language is given by

∃r,x1,x2 Root(r)∧ f (r)∧E(r,x1)∧E(r,x2)∧g(x1)∧g(x2) ∧
x1 6= x2∧∀z E(r,z) → (z= x1∨z= x2) ∧
ϕ(x1,x2)

The formula says thatr is the root, labelledf and thatr has exactly two
childrenx1 andx2 both labelledg andϕ holds forx1 andx2.

It is known that this tree language isnot MSO-definable. It can be shown
that it is not even PMSO-definable. The proof method is a variant of the proof
for the pumping lemma for recognisable tree languages adopted to unordered
unranked trees and PTA.

Proposition 3 The tree language L1 is DTC-definable, but isnot PMSO-
definable.

PROOF. SupposeA = (Q,Λ,δ,F) is a tree automaton acceptingL1 and
k = |Q| is the number of states. Letm> k. Consider the treet = f{gm,gm} ∈
L1 and in particular its subtreegm. Sincem> k there must be a treet ′ = gl1

a non-empty contextC = gl2{•} and a contextC′ = gl3{•} and a stateq∈ Q
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FIGURE 2 Separating automata logics from fixed-point logics.

such thatl1+ l2+ l3 = mandgm =C′{C{t ′}} and both the root oft ′ andC{t ′}
receive stateq in an accepting run fort.

Thereforeu = f{gm,C′{C{C{t ′}}}} is accepted byA because bothC{t ′}
andC{C{t ′}} receive stateq in an accepting run.
But u /∈ L1. �

The results of this subsection are depicted in Figure 2. Logics in the green
area are capable of definingL1, whereas logics in the red area are not.

Theorem 4 The following inclusions arestrict.

. MDTC is strictly less powerful thanDTC.. MTC is strictly less powerful thanTC.. MLFP is strictly less powerful thanLFP.. PMSOis strictly less powerful than ESO.

1.5.2 An MSO-Definable Tree Language

Consider the following tree language. It is originally defined in (Ebbinghaus
and Flum, 1995) as a class of finite graphs. All leaves are labelled either
with 0 or 1. All internal nodes are labelled withB for blank, some void node
label that is there only because we demand all nodes to be labelled. The leaf
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labels 0 and 1 are interpreted as false and true (resp.). Internal nodes function
as gates. They are set to true iff exactly one child node is setto false. We
consider the class of trees whose root node is evaluated to true.

Formally we define two tree languages inductively as follows. Let Λ =
{0,1,B} be a set of labels. The tree languagesL2 andL3 are the smallest sets
such that

0 ∈ L3

1 ∈ L2

B(L′) ∈ L3 whereL′ ⊆m f in L2

B({t}⊎L′) ∈ L2 wheret ∈ L3 andL′ ⊆m f in L2

B({t,t ′}⊎L′⊎L′′) ∈ L3 wheret,t ′ ∈ L3,L
′ ⊆m f in L3, andL′′ ⊆m f in L2.

The tree languageL2 is recognised by the following Presburger tree au-
tomatonA = ({qt ,qf },Λ,δ,{qt}) where

δ(0,qf ) = true δ(0,qt) = f alse
δ(1,qf ) = f alse δ(1,qt) = true
δ(B,qf ) = yqf = 0∨yqf ≥ 2 δ(B,qt) = yqf = 1

HenceL2 is PMSO-definable. A close inspection ofδ reveals that all con-
straints in the transitions are unary ordering constraints. HenceL2 is even
MSO-definable.

Proposition 5 There exists a tree language which isMSO-definable, but is
not TC-definable.

The proof that the tree languageL2 is not TC-definable is an applica-
tion of results by Grohe (1994), reported in (Ebbinghaus andFlum, 1995,
Chap. 7.6.3).

The results of this subsection are depicted in Figure 3. Logics in the green
area are capable of definingL2, whereas logics in the red area are not.

Theorem 6 The following inclusions arestrict.

. MTC is strictly less powerful thanMLFP andMSO.. TC is strictly less powerful thanLFP.

Theorem 7 The logics(P)MSOandTC are incomparable over the class of
finite unordered unranked trees.

1.6 Separating Fixed-Point Logics and Second-Order Logics
The main result of this section is that there is a tree languages definable in
CMSO that is notL ω

∞ω-definable. We use the well known fact thatL ω
∞ω is not
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FIGURE 3 Separating automata logics from fixed-point logics.

particularly good at counting.
Let Λ = {A}. Define the tree languageL4 = {(V,E,λ) | |V| =

2n for somen∈ N} as the set of all tree with an even number of nodes (where
each node is labelled withA). We first show thatL4 is CMSO-definable. The
following formula definesL4.

∃X(∀x.x∈ X∧Mod2
0(X))

We will next show thatL4 is notL ω
∞ω-definable using infinite pebble games.

For the definition of this type of games, the reader is referred to, e.g., (Libkin,
2004, Chap. 11.2). For a natural numberk defineAk to be

A

A A . . . A A
︸ ︷︷ ︸

k
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andBk to be

A

A A . . . A A A
︸ ︷︷ ︸

k+1

If k is even thenAk has an odd number of nodes whileBk has an even
number of nodes. Ifk is odd thenAk has an even number of nodes whileBk

has an odd number of nodes.

Lemma 8 The duplicator has a winning strategy for the infinite pebblegame
PG∞

k (Ak,Bk) for every k∈ N.

PROOF. Let (a1, . . . ,ak) 7→ (b1, . . . ,bk) be a partial isomorphism between
Ak andBk. We assume no two pebbles are ever placed on the same node, be-
cause doing so leads to a game with less thank pebbles. We also assume that
the spoiler never leaves a pebble in its place when making a move, because if
he did, the duplicator would do the same and the move would be void.

Assume the spoiler choosesBk and to reposition pebblej. We distinguish
the following cases.
Case 1: There is a pebble on the root ofBk.
Since(a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial isomorphism, there is al with
1≤ l ≤ k such thatbl is the pebble on the root ofBk andal is a pebble on the
root ofAk.
Case 1.1:j = l , i.e., the spoiler chooses the pebble on the root.
Since there is now no pebble on the root ofBk, the substructure(b1, . . . ,bk) is
now a discrete structure ofk elements. SinceAk hask leaves and one pebble is
placed on the root ofAk there must be an unpebbled leaf ofAk. The duplicator
places hisj-th pebble on this leaf. Now(a1, . . . ,ak) is also a discrete structure
and(a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial isomorphism.
Case 1.2:j 6= l , i.e., the spoiler chooses a pebble on one of the leaves.
The spoiler moves pebblej onto an unpebbled leaf. The resulting substructure
induced by(b1, . . . ,bk) is obviously isomorphic to the one before the move.
Actually, it is Bk−2 =̃ Ak−1. Since the substructure induced by(a1, . . . ,ak)
is alsoAk−1, the duplicator leaves all his pebbles in place and(a1, . . . ,ak) 7→
(b1, . . . ,bk) is a partial isomorphism.
Case 2: There is no pebble on the root ofBk.
Both (b1, . . . ,bk) and(a1, . . . ,ak) are discrete structures.
Case 2.1: The spoiler moves pebblej onto the root ofBk.
The induced structure of(b1, . . . ,bk) is now Bk−2 =̃ Ak−1. The duplicator
mimics this move moving his pebblej onto the root ofAk. Now the induced
structure of(a1, . . . ,ak) is alsoAk−1 and(a1, . . . ,ak) 7→ (b1, . . . ,bk) is a partial
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FIGURE 4 Separating fixed-point logics from second-order logics.

isomorphism.
Case 2.2: The spoiler moves pebblej onto an unpebbled leaf ofBk.
Then(b1, . . . ,bk) remains a discrete structure. Thus it is already isomorphic
to (a1, . . . ,ak), and the duplicator leaves all his pebbles in place.

The argument for the situation where the spoiler chooses to move on struc-
tureAk is analogous, actually simpler. �

The lemma implies thatAk |= ϕ iff Bk |= ϕ for everyk∈ N andϕ ∈ L k
∞ω.

Proposition 9 The tree language L4 of trees with an even number of nodes is
CMSO-definable, but isnotL ω

∞ω-definable.

PROOF. SupposeL4 wereL ω
∞ω-definable, i.e, there were a formulaϕ∈ L ω

∞ω
that definedL4. By definition ofL ω

∞ω there is ak ∈ N such thatϕ ∈ L k
∞ω. By

the above lemma, eitherAk |= ϕ andBk |= ϕ or Ak 2 ϕ andBk 2 ϕ. But one
of Ak,Bk has an even number of nodes, while the other has an odd number
of nodes. �

The results of this section are summarised in Figure 4. Logics in the green
area can defineL4 whereas logics in the red one cannot.

Theorem 10 The following inclusions arestrict.
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SO(TC) L ω
∞ω

SO L ω
∞ω ∩PSPACE

ESO PFP

PMSO LFP

CMSO

MSO MLFP
=

TC

MTC DTC

MDTC

FO

FIGURE 5 Logics for finite unordered unranked trees.
⊃— indicates a proper inclusion.

. PFPis strictly less powerful thanSO(TC).. LFP is strictly less powerful than ESO.. MSO is strictly less powerful thanCMSO.

The last result is already known. We just provided an alternative proof of
the result.

1.7 Conclusion

Figure 5 depicts a landscape of the expressive power of different logics for
finite unordered unranked trees. This includes the relationship between PFP
andL ω

∞ω, which we have not been able to present here due to space restric-
tions. As one can see, most inclusions between different logics turn out to be
proper.

An important result one can see from this picture is that the automata log-
ics are largely incomparable to the logics stemming from descriptive com-
plexity theory (TC, LFP, PFP).

Most of the remaining open questions are directly related todifficult open
problems in complexity theory. This is true for the second-order logics, but
also concerns the transitive closure logics. Also, the separation of LFP from
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L ω
∞ω

SO(TC)= PFP= PSPACE

SO= PH

ESO= NP

LFP= P

TC = NLOGSPACE

DTC = DLOGSPACE

MSO= MLFP= CMSO= PMSO

MTC

MDTC

FO

FIGURE 6 Logics for finite ordered ranked trees.
⊃— indicates a proper inclusion.

PFP amounts to the separation of PTIME from PSPACE by the Abiteboul-
Vianu theorem (Abiteboul and Vianu, 1995).

Appendix: The Situation for Finite Ordered Ranked Trees

For comparison we also show what is known about the expressive power of
the above mentioned logics on finite ordered ranked trees. Most questions on
whether or not inclusions are proper are open. This is probably due to the fact
that they are directly related to famous open problems in classical complexity
theory. Figure 6 summarises the results.

There are only few known non-trivial results of proper inclusion. Kolaitis
and Vardi (1992) showed that PFP( L ω

∞ω. The proper inclusion TC( PFP
follows from the space hierarchy theorem. Tiede and Kepser (2006) showed
that MSO( DTC. Recently, ten Cate and Segoufin (2008) were able to show
that also MTC( MSO.
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