
6

Properties of Binary Transitive

Closure Logic over Trees

Stephan Kepser

Abstract

Binary transitive closure logic (FO∗ for short) is the extension of first-order
predicate logic by a transitive closure operator of binary relations. It is known
that this logic is more powerful than FO on arbitrary structures and on finite
ordered trees. It is also known that it is at most as powerful as monadic
second-order logic (MSO) on arbitrary structures and on finite trees. We
will study the expressive power of FO∗ on trees to show that several MSO
properties can be expressed in FO∗.

The following results will be shown.

. A linear order can be defined on trees.

. The class EVEN of trees with an even number of nodes can be defined.

. On arbitrary structures with a tree signature, the classes of trees and finite
trees can be defined.

. FO∗ is strictly more powerful than tree walking automata.

These results imply that FO∗ is neither compact nor does it have the

Löwenheim-Skolem-Upward property.

6.1 Introduction

The question about the best suited logic for describing tree properties or
defining tree languages is an important one for model theoretic syntax
as well as for querying treebanks. Model theoretic syntax is a research
program in mathematical linguistics concerned with studying the de-
scriptive complexity of grammar formalisms for natural languages by

77

FG-2006.

Organizing Committee:, Paola Monachesi, Gerald Penn, Giorgio Satta, Shuly Wintner.

Copyright c© 2006, CSLI Publications.



78 / Stephan Kepser

defining their derivation trees in suitable logical formalisms. Since the
very influential book by Rogers (1998) it is monadic second-order logic
(MSO) or even more powerful logics that are used to describe linguistic
structures.

With the advent of XML and query languages for XML documents,
in particular XPath, the interest in logics for querying treebanks rose
dramatically. There is now a large interest in this topic in computer
science. Independent of that, but temporarily parallel, large syntacti-
cally annotated treebanks became available in linguistics. They provide
nowadays a rich and important source for the study of language. But
in order to access this source, suitable query languages for treebanks
are required.

One of the simplest properties that are known to be inexpressible in
first-order predicate logic (FO henceforth) is the transitive closure of a
binary relation. It is therefore a natural move to extend FO by a binary
transitive closure operator. And this move has been done before in the
definition of query languages for relational databases, in particular for
the SQL3 standard. But it seems that the expressive power of FO plus
binary transitive closures (FO∗ for short) to define tree properties is
not much studied yet. This is somewhat surprising, because there is
reason to believe that FO∗ is more user friendly than MSO. Most users
of query languages, in particular linguists, understand the concept of
a transitive closure very well and know how to use it. It is a lot more
difficult to use set variables to describe tree properties. An example
for this claim is the fact MSO is capable of defining binary transitive
closures, as shown by Moschovakis (1974). His formula is given at the
end of the next section. It is questionable that ordinary users (without
profound knowledge of MSO) would be able to find this formula.

We propose to seriously consider FO∗ as a language for defining tree
properties. We do so by showing that several important MSO definable
properties can be defined in FO∗. One such example is the ability to
define a linear order on the nodes of a tree. The order resembles depth-
first left-to-right traversal of a tree. A linear order is a powerful concept
that can be used defining additional properties. For example, it is used
to count the number of nodes in a tree modulo a given natural number.
An instance is the definition of the class EVEN of all trees with an even
number of nodes in FO∗.

Arguably an important reason for Rogers’ choice of MSO is its abil-
ity to axiomatise trees. I.e., there exists a set of axioms such that an
arbitrary structure (of a suitable signature) is a tree – finite or infinite
– iff it is a model of the axioms. It is known that this characterisation of
trees cannot be done using FO. But the full expressive power of MSO



Properties of Binary Transitive Closure Logic over Trees / 79

may not really be needed for the axiomatisation, because we show that
arbitrary trees and finite trees can be axiomatised in FO∗. This capabil-
ity of axiomatising finite and infinite trees implies that FO∗ is neither
compact nor does it possess the Löwenheim-Skolem-Upward property.

There exists a tree automaton concept that defines serial instead of
parallel processing of trees, namely tree walking automata (TWA). As
the name implies, a tree is processed by walking up and down in the
tree and inspecting nodes serially. One may therefore believe that these
automata could be the automaton-theoretic correspondant of FO∗. But
we show here that FO∗ is more powerful. Every tree language that
is recognised by a TWA can be defined in FO∗. But there are FO∗-
definable tree languages that cannot be recognised by any TWA.

6.2 Preliminaries

Let M be a set. We write ℘(M) for the power set of M . Let R ⊆M×M
be a binary relation over M . The transitive closure TC(R) of R is the
smallest set containing R and for all x, y, z ∈ M such that (x, y) ∈
TC(R) and (y, z) ∈ TC(R) we have (x, z) ∈ TC(R). I.e.,

TC(R) :=
⋂

{W | R ⊆W ⊆M ×M, ∀x, y, z ∈M :
(x, y), (y, z) ∈ W =⇒ (x, z) ∈W}.

We consider labelled ordered unranked trees. A tree is ordered if the
set of child nodes of every node is linearly ordered. A tree is unranked
if there is no relationship between the label of a node and the number
of its children. In Sections 6.3 and 6.5 we only consider finite trees, in
Section 6.4 we also consider infinite trees.

Definition 1 A tree domain is a non-empty subset T ⊆ N
∗ such that

for all u, v ∈ N
∗ : uv ∈ T =⇒ u ∈ T (closure under prefixes) and for

all u ∈ N
∗ and i ∈ N : ui ∈ T =⇒ uj ∈ T for all j < i (closure under

left sisters).
Let L be a set of labels. A tree is a pair (T, Lab) where T is a tree

domain and Lab : T → L is a node labelling function.
A tree is finite iff its tree domain is finite.

We remark that a tree domain is at most countable, since it is a
subset of a countable union of countable sets.

The language to talk about trees will be an extension of first-order
logic. Its syntax is as follows. Let X = {x, y, z, w, u, x1, x2, x3, . . . } be a
denumerable infinite set of variables. The atomic formulae are L(x) for
each label L ∈ L, x→ y, and x ↓ y. Complex formulae are constructed
from simpler ones by means of the boolean connectives, existential and
universal quantification, and transitive closure. I.e., if φ and ψ are for-



80 / Stephan Kepser

mulae, then ¬φ, φ ∧ ψ, φ ∨ ψ, ∃x : φ, ∀x :φ, and [TCx1,x2
φ](x, y) are

formulae.
The semantics of the first-order part of the language is standard. Let

(T, Lab) be a tree. A variable assignment a : X → T assigns variables
to nodes in the tree. The root node has the empty address ǫ. Now
[[L(x)]]a = T iff Lab(a(x)) = L. [[x ↓ y]]a = T iff a(y) = a(x)i for some
i ∈ N, i.e., ↓ is the parent relation. [[x→ y]]a = T iff there is a u ∈ T and
i ∈ N such that a(x) = ui and a(y) = ui+ 1, i.e., → is the immediate
sister relation.

Boolean connectives and quantification have their standard interpre-
tation. Now, [[[TCx1,x2

φ](x, y)]]a = T iff

(a(x), a(y)) ∈ TC({(b, d) | [[φ]]ab/x1d/x2 = T})

where ab/x1d/x2 is the variable assignment that is identical to a ex-
cept that x1 is assigned to b and x2 to d. If φ is a formula with free
variables x1, x2, it can be regarded as a binary relation φ(x1, x2). Then
[TCx1,x2

φ] is the transitive closure of this binary relation. This lan-
guage is abbreviated FO∗.

FO∗ is amongst the smallest extension of first-order logic. It is known
that the transitive closure of a binary relation is not first-order definable
(Fagin, 1975). But when talking about trees, people frequently want
to talk about paths in a tree. And a path is the transitive closure of
certain base steps. FO∗ has at most the expressive power of monadic
second-order logic (MSO). It is an old result, which goes back at least
to Moschovakis (1974, p. 20), that the transitive closure of every MSO-
definable binary relation is also MSO-definable. Let R be an MSO-
definable binary relation. Then

∀X (∀z, w(z ∈ X ∧R(z, w) =⇒ w ∈ X) ∧ ∀z(R(x, z) =⇒ z ∈ X))
=⇒ y ∈ X

is a formula with free variables x and y that defines the transitive
closure of R. It follows that every tree language definable in FO∗ can
be defined in MSO.

6.3 Definability of Order

One of the abstract insights from descriptive complexity theory is that
order is a very important property of structures. The relationship be-
tween certain logics and classical complexity classes is frequently re-
stricted to ordered structures, i.e., structures where the carrier is lin-
early ordered. The reason for this restriction is to be found in the
fact that computation is an ordered process. Definability and non-
definability results for certain logics over ordered structures frequently



Properties of Binary Transitive Closure Logic over Trees / 81

do not extend to unordered structures. It is therefore an important
property of a logic, if the logic itself is capable of expressing order
without recourse to an extended signature. The probably best known
logic with this property is Σ1

1, the extension of first-order logic by arbi-
trary relation variables that are existentially quantified. It is obviously
possible to define order in Σ1

1, because we can say there is a binary
relation that has all the properties of a linear order. These properties
are known to be first-order properties. It is hence the ability to say
“there is a binary relation” that is the key.

There is no way that FO∗ could define order on arbitrary finite
structures. But if we only consider trees as models, FO∗ can define
order. Indeed it is possible to give a definition of the depth-first left-to-
right order of nodes in a tree (and some variants).

Proposition 1 There is an explicit definition of a linear order of the

nodes in a tree in FO∗.

Proof. Define the proper dominance relation of trees Dom(x, y) as
[TCx,y x ↓ y](x, y). Similarly, define the sister relation Sis(x, y) as
[TCx,y x→ y](x, y). Now define x < y as

Dom(x, y) ∨ (∃w, v : Sis(w, v) ∧
(w = x ∨Dom(w, x)) ∧ (v = y ∨Dom(v, y))).

The first disjunct expresses the “depth-first” part of the order. The
more complicated second disjunct formalises the “left-to-right” part. It
expresses that there is a common ancestor of nodes x and y and node
x is to be found on a left branch while y is to be found on a right
branch. Care is taken that mutual domination is excluded. Hence the
two disjuncts are mutually exclusive. Since the dominance and the sis-
terhood steps are both irreflexive, the whole relation < is irreflexive.
Furthermore for each pair of distinct nodes in a tree, either one domi-
nates the other, or there is a common ancestor such that one node is on
a left branch while the other is on a right branch. Hence the relation is
total. Transitivity can easily be checked by considering the four cases
involved in expanding x < y and y < z. ⊔⊓

Note that the root node is the smallest element of the order. If the
tree is finite, the largest element is the leaf of the rightmost branch of
the tree. The root node is FO-definable via ¬∃y : y ↓ x. The largest
element Max of the order is FO∗-definable by ∃x¬∃y : x < y. The
successor y of a node x in the linear order (Succ(x, y)) is also FO∗-
definable: x < y∧¬∃z : x < z∧z < y. Using a linear order it is possible
to do modulo counting on trees. That is for n, k ∈ N we can define the
class of finite trees such that each tree in the class has d× n+ k nodes



82 / Stephan Kepser

(for some d ∈ N). As an example, we define the class EVEN of trees
with an even number of nodes (i.e, n = 2, k = 0).

Proposition 2 The class of finite trees with an even number of nodes

is FO∗-definable.

Proof. We only consider the case where a tree has more than two nodes.
The formula

∃w : Succ(Root, w) ∧ [TCx,y∃z : Succ(x, z) ∧ Succ(z, y)](w,Max)

expresses that we go in one step from the root to its successor w. From
w we can reach the last element of the order by an arbitrary number
of two successor steps. If we take the two-successors-step path through
the linear order from the root to the maximum, we have an odd number
of nodes, since a path of n double-successor-steps has n+ 1 nodes. ⊔⊓

Corollary 3 FO∗ has no normal form of the type [TCx,y φ(x, y)](r, r)
where φ(x, y) is an FO formula and r the root.

Proof. With a single application of a TC-operator we can define trees
with a linear order. If FO with a single TC-operator is interpreted over
finite successor structures, then it is equivalent to FO with order. But
over finite orderings, EVEN is not definable in FO. ⊔⊓

6.4 Definability of Tree Structures

In previous and all following sections we assume that we only consider
tree models as defined in the preliminaries section. But in this sec-
tion we take a more general view, a view that has its origin in model
theoretic syntax. The aim is to find whether it is possible to give an
axiomatisation of those structures linguists are interested in. This task
has two subparts. The first consists of defining trees, or more precisely
finite trees, as the intended models. The second part consists of ax-
iomatising linguistic principles such as the Binding theory in the given
logic. We will only be concerned with the first part here. This section is
inspired by the book by Rogers (1998). More specifically we show that
the main results of Chapter 3 carry over to FO∗. We will frequently
cite this chapter in the current section.

The language of this section is binary transitive closure logic with
equality over the following base relations:
⊳ parent relation
⊳∗ dominance relation
⊳+ proper dominance relation
≺ left-of relation

We also assume there to be a set L of unary predicate symbols repre-



Properties of Binary Transitive Closure Logic over Trees / 83

senting linguistic labels. We write FO∗⊳ for this language to indicate
that the base relations differ from the ones in the other sections of this
paper.

A model for FO∗⊳ is a tuple (U,P,D,L, Lab) where U is a non-empty
domain, P,D and L are binary relations over U interpreting ⊳, ⊳∗ and
≺. And Lab : L → ℘(U) interpretes each label as a subset of U .

Since the intended models of this language are trees, we have to
restrict the class of models by giving axioms of trees. Many properties
of trees can be defined by first-order axioms. The following 12 axioms
are cited from (Rogers, 1998, p. 15f.).

A1 ∃x∀y : x ⊳∗ y
(Connectivity wrt dominance)

A2 ∀x, y : (x ⊳∗ y ∧ y ⊳∗ x) → x = y
(Antisymmetry of dominance)

A3 ∀x, y, z : (x ⊳∗ y ∧ y ⊳∗ z) → x ⊳∗ z
(Transitivity of dominance)

A4 ∀x, y : x ⊳+ y ↔ (x ⊳∗ y ∧ x 6= y)
(Definition of proper dominance)

A5 ∀x, y : x ⊳ y ↔ (x ⊳+ y ∧ ∀z : (x ⊳∗ z ∧ z ⊳∗ y) → (z ⊳∗ x∨ y ⊳∗ z))
(Definition of immediate dominance)

A6 ∀x, z : x ⊳+ z → ((∃y : x ⊳ y ∧ y ⊳∗ z) ∧ (∃y : y ⊳ z))
(Discreteness of dominance)

A7 ∀x, y : (x ⊳∗ y ∧ y ⊳∗ x) ↔ (x 6≺ y ∧ y 6≺ x)
(Exhaustiveness and exclusiveness)

A8 ∀w, x, y, z : (x ≺ y ∧ x ⊳∗ w ∧ y ⊳∗ z) → w ≺ z
(Inheritance of Left-of wrt dominance)

A9 ∀x, y, z : (x ≺ y ∧ y ≺ z) → x ≺ z
(Transitivity of left-of)

A10 ∀x, y : x ≺ y → y 6≺ x
(Asymmetry of left-of)

A11 ∀x(∃y : x ⊳ y) → (∃y : x ⊳ y ∧ ∀z : x ⊳ z → z 6≺ y)
(Existence of a minimum child)

A12 ∀x, z : x ≺ z → (∃y : x ≺ y ∧ ∀w : x ≺ w → w 6≺ y) ∧
(∃y : y ≺ z ∧ ∀w : w ≺ z → y 6≺ w)

(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 1998, p. 16f.).
Every tree (finite or infinite) obeys to these axioms. But there are non-
standard models, i.e., structures that are models of theses axioms but
would not be considered as trees. Actually, it is not possible to give
a first-order axiomatisation of trees, as was shown by Backofen et al.



84 / Stephan Kepser

(1995). A look at the non-standard model given by Backofen et al.
(1995) helps to understand where the problem is located. Consider
the model M of Figure 1. It consists of two components: an infinite
sequence of nodes, each with a single child, extending up from the
root; and, infinitely far out, a second component in which every node
has exactly two children, every node has a parent in that component,
and every node is dominated by every node in the first component. The
arrows in the figure are intended to suggest that there is no maximal
point (wrt dominance) among the set of points with single children and
no minimal point (wrt dominance) among the set of points with two
children.

•

•

��
.
.
.

.

.

.

CC���������
•

[[777777777

��
��

��
��

LLLLLLLLLLLLLL

•

��
��

��
��

;;
;;

;;
;;

•

��
��

��
��

::
::

::
::

.

.

.

.

.

.

.

.

.

.

.

.

FIGURE 1 A nonstandard model of the first-order tree axioms.

It is easy to see that the proper dominance relation does not only con-
tain the immediate dominance relation but also the transitive closure
of the immediate dominance. In the nonstandard models, proper dom-
inance truly extends the transitive closure of immediate dominance.
In the example, all nodes of the first component properly dominate all
nodes of the second component. But this part of the dominance relation
is not contained in the transitive closure of immediate dominance. In a
proper tree model, the proper dominance is always identical to the tran-
sitive closure of immediate dominance. This insight can be expressed



Properties of Binary Transitive Closure Logic over Trees / 85

in FO∗⊳ as an axiom.

AT1 ∀x, y : x ⊳+ y → [TCz,wz ⊳ w](x, y)
(Proper dominance is the transitive closure of immediate domi-
nance)

Another way of reading this axiom is to say that the path from an
arbitrary node back to the root is finite. AT1 together with the first-
order axioms does still not suffice to axiomatise proper trees. Consider
the sisters of a node. They are ordered by ≺, and there is a left-most
sister. Now, in a proper tree, the number of sisters to the left is finite for
every node. This can be axiomatised as follows. We can easily define
that one node is the immediate sister of another node. The relation
IS(x, y) is defined as ∃z : z ⊳ x∧ z ⊳ y∧x ≺ y∧¬∃w : x ≺ w ≺ y. Now
we can spell out an axiom analogue to AT1.

AT2 ∀x, y, z : (x ⊳ y ∧ x ⊳ z ∧ y ≺ z) → [TCv,wIS(v, w)](y, z)
(Finitely many left sisters)

Theorem 4 Axioms A1–A12, AT1, and AT2 define the class of tree

models.

Proof. The proof is analogous to the proof of Theorem 3.9 in (Rogers,
1998). Consider in particular Footnote 8 on page 23.

Rogers showed that every tree (in the sense of Definition 1) is a model
of axioms A1–A12 and for each node x ∈ U the sets Ax = {(y, x) ∈ D}
of ancestors of x and Lx = {y | ∃z : (z, x), (z, y) ∈ D and (y, x) ∈ L} of
left sisters of x are finite (Lemma 3.5). And every tree obviously satisfies
axioms AT1 and AT2. Furthermore, each model of axioms A1–A12
where Ax and Lx are finite for each node x ∈ U is isomorphic to a tree
(Lemma 3.6). Now suppose a model of A1–A12 satisfies AT1. Then for
each node x ∈ U the set Ax is finite, because it contains the root (A1)
and is constructed of parent-child steps (AT1), and a transitive closure
of single steps cannot reach a limit ordinal. An analogous argument can
be made with respect to models of A1–A12 and AT2. Hence for every
model of of A1–A12, AT1, and AT2 and all nodes x ∈ U we see that
the sets Ax and Lx are finite. By the above quoted Lemma 3.6, these
models are isomorphic to trees. ⊔⊓

The tree models of Axioms A1–A2, AT1, and AT2 can be finite as
well as infinite. But since they are all tree models, they are at most
countable. This is because every tree domain is at most countable (see
remark after Definition 1). And every tree model is isomorphic to a
tree. As an immediate consequence we get that FO∗ does not have
the Löwenheim-Skolem-Upward property. This property states that if
a theory (i.e., potentially infinite set of sentences) has a model of size



86 / Stephan Kepser

ω it has models of arbitrary infinite cardinalities.
Linguists are mostly (if not exclusively) concerned with finite trees.

Hence it would be nice if we could restrict the class of models further
down to finite trees. This can indeed be done. Rogers (1998) defines
a linear order on the nodes of a tree as follows. Node x < y iff x ⊳+

y ∨ x ≺ y. By Axiom A7, each pair of nodes is either a member of
the dominance relation or a member of the left-of relation. Hence this
defines indeed a linear order. Actually, the order is the same as the one
in the previous section: depth-first left-to-right tree traversal. As in the
previous section we use Succ(x, y) for y being the immediate successor
of x in the order. Finiteness can now be defined in two steps. Firstly we
demand the linear order to be the transitive closure of the immediate
successor relation. The consequence of this demand is that for every
element in the order there is only a finite number of nodes that are
smaller than this element. Secondly we demand the order to have a
maximal element. If the maximal element has only a finite number of
elements smaller than it, the tree is obviously finite.

AF ∀x, y : x < y =⇒ [TCx,y Succ(x, y)](x, y) ∧
∃x∀y : y < x ∨ y = x.
(Finiteness of the order <)

Theorem 5 Axioms A1–A12, AT1, AT2, and AF define the class of

finite tree models.

Proof. By Theorem 4, every model of the Axioms A1–A12, AT1, and
AT2 is isomorphic to a tree model. If a model is finite, then AF is
certainly true. For the converse, assume that ∀x, y : x < y =⇒
[TCx,y Succ(x, y)](x, y). By definition of the TC-operator, the set {y |
y < x} of elements smaller than x is finite for every node x. If the order
has additionally a maximal element m, then it is finite. ⊔⊓

As a simple consequence of the above theorem we get that FO∗ is
not compact.

6.5 FO∗ and Tree Walking Automata

Tree walking automata were introduced by Aho and Ullman (1971) as
sequential automata on trees. At every moment of its run, a TWA is
in a single node of the tree and in one of a finite number of states. It
walks around the tree choosing a neighboring node based on the current
state, the label of the current node, and the child number of the current
node.

More formally, we consider trees of maximal branching degree k.
The following definition is mainly cited from (Bojanczyk and Colcom-



Properties of Binary Transitive Closure Logic over Trees / 87

bet, 2005). Every node v has a type. The possible values are Types =
{r, 1, 2, . . . , k}× {l, i} where r stands for the root, j ∈ {1, . . . , k} states
that v is the j-th child, l states that v is a leaf, i that v is an internal
node. A direction is an element of Dir = {↑, ↓1, . . . , ↓k, stay} where ↑
stands for ‘move to the parent’, ↓j ‘move to the j-th child, and stay to
‘stay at the current node’. A TWA is a quintuple (S,Σ, δ, s0, F ) where
S is a finite set of states, Σ is the alphabet of node labels, s0 ∈ S is the
initial state and F ⊆ S is the set of final states. The transition relation
δ is of the form

δ ⊆ S × Types × Σ × S × Dir.

A configuration is a pair of a node and a state. A run is a sequence
of configurations where every two consecutive configurations are con-
sistent with the transition relation. A run is accepting iff it starts and
ends at the root of the tree, the first state is s0 and the last state is a
member of F . The TWA accepts a tree iff there is an accepting run.
The set of Σ-trees recognised by a TWA is the set of trees for which
there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot recog-
nise all regular tree languages. This means that MSO and tree automata
are strictly more powerful than TWA. In an extension of their proof we
will show that even FO∗ is more powerful than TWA.

Theorem 6 The classes of tree languages definable in FO∗ strictly ex-

tend the classes of tree languages recognisable by TWA.

Proof. The proof consists of two parts. We will first show that ev-
ery TWA-recognisable tree language is FO∗-definable. Secondly we will
show that there is an FO∗-definable tree language that cannot be recog-
nised by any TWA.

The first part of the proof is based on recent results by Neven and
Schwentick (2003). They showed that a tree language is recognisable
by a TWA if and only if it is definable by a formula of the following
type: [TCx,y φ(x, y)](r, r) where r is a constant for the root of a tree,
φ is an FO formula with additional unary depthm predicates. Apart
from the depthm predicates, these formulae are obviously in FO∗. Now,
depthm(x) is true iff x is a multiple of m steps away from the root.
For every m, the predicate depthm can be defined by an FO∗-formula:
[TCx0,xm

∃x1, . . . xm−1 : x0 ↓ x1 ∧ · · · ∧ xm−1 ↓ xm](r, x) is a predicate
that is true on a node x just in case there is a k ∈ N such that x is
at depth k ×m. Thus every TWA-recognisable tree language is FO∗-
definable.

To show the second half of the theorem, we will indicate that the
separating language L given by Bojanczyk and Colcombet (2005) can



88 / Stephan Kepser

be defined in FO∗. The authors consider binary trees. They show (in
Fact 1) that L can be defined in first-order logic with the following three
basic relations: left and right child, and ancestor relation. Now, left
and right child are obviously FO∗-definable relations. And the ancestor
relation is easily FO∗-definable: [TCx,y x ↓ y]. ⊔⊓

The relationship between TWA and transitive closure logics was re-
cently also studied by Engelfriet and Hoogeboom (2006). They show
that if one extends deterministic TWA by finite sets of pebbles, they
have the same expressive power as deterministic transitive closure log-
ics.

6.6 Conclusion

We showed a number of properties of FO∗ to indicate that it should
seriously be considered as a logic for defining tree languages. Although
the addition of binary transitive closure to first-order logic can be seen
as a small one, FO∗ is capable of expressing important second-order
properties over trees. It is possible to define a linear order over the
nodes in a tree. And using this order one can count modulo any natural
number. On arbitrary structures with appropriate signature one can
axiomatise the classes of trees and finite trees. These axiomatisations
showed that FO∗ is neither compact nor does it have the Löwenheim-
Skolem-Upward property. Furthermore although tree walking automata
look like they might serve as an automaton model for FO∗, it turns out
that FO∗ is more powerful than TWA.

A word about complexity issues may be in place. FO∗ has quite a
good data complexity. By translating FO∗ formulae into MSO formulae
and using the equivalence between MSO and tree automata one can see
that FO∗ has a linear time data complexity. And since FO∗ is a sublogic
of FO+TC (see below), it also has NLOGSPACE data complexity. A
straight-forward implementation of transitive closure yields a PTIME
query complexity. It is unclear to the author whether this result can be
improved upon.

The main open question is of course whether FO∗ is strictly less
powerful than MSO. It is also interesting to study the relationship of
FO∗ to modal languages for trees like PDLTree (Kracht, 1995). Marx
(2004) basically showed that PDLTree is at most as powerful as FO∗3,
where FO∗3 is the restriction of FO∗ where every formula has at most
3 different variables. ten Cate (2006) recently showed that queries in
XPath with Kleene star and loop predicate have the same expressive
power as FO∗3.

One may also ask what happens if we introduce the transitive clo-



References / 89

sure of arbitrary relations, not just binary ones. This logic (abbreviated
FO+TC) was introduced by Immerman (see Immerman, 1999) to log-
ically describe the complexity class NLOGSPACE. Tiede and Kepser
(2006) have recently shown that FO+TC is more expressive than MSO
over trees. The statement remains true even if one only considers de-

terministic transitive closures.

Acknowledgements

The author wishes to thank four anonymous referees whose comments
helped improving the quality of the paper.
This research was funded by a grant of the German Research Founda-
tion (DFG SFB-441).

Stephan Kepser
Collaborative Research Centre 441
University of Tübingen
Germany

References

Aho, Alfred V. and Jeffrey D. Ullman. 1971. Translations on a context-free
grammar. Information and Control 19:439–475.

Backofen, Rolf, James Rogers, and Krishnamurti Vijay-Shanker. 1995. A
first-order axiomatization of the theory of finite trees. Journal of Logic,
Language, and Information 4:5–39.

Bojanczyk, Mikolaj and Thomas Colcombet. 2005. Tree-walking automata
do not recognize all regular languages. In H. N. Gabow and R. Fagin, eds.,
The 37th ACM Symposium on Theory of Computing (STOC 2005), pages
234–243. ACM.

Engelfriet, Joost and Hendrik Jan Hoogeboom. 2006. Nested pebbles and
transitive closure. In B. Durand and W. Thomas, eds., STACS 2006 , vol.
LNCS 3884, pages 477–488. Springer.

Fagin, Ronald. 1975. Monadic generalized spectra. Zeitschrift für Mathema-
tische Logik und Grundlagen der Mathematik 21:89–96.

Immerman, Neil. 1999. Descriptive Complexity . Springer.

Kracht, Marcus. 1995. Syntactic codes and grammar refinement. Journal of
Logic, Language, and Information 4(1):41–60.



90 / Stephan Kepser

Marx, Maarten. 2004. XPath with conditional axis relations. In E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis,
K. Böhm, and E. Ferrari, eds., Advances in Database Technology – EDBT
2004 , vol. LNCS 2992, pages 477–494. Springer.

Moschovakis, Yiannis. 1974. Elementary Induction on Abstract Structures.
North-Holland Publishing Company.

Neven, Frank and Thomas Schwentick. 2003. On the power of tree-walking
automata. Information and Computation 183(1):86–103.

Rogers, James. 1998. A Descriptive Approach to Language-Theoretic Com-
plexity . CSLI Publications.

ten Cate, Balder. 2006. Expressivity of XPath with transitive closure. In
J. van den Bussche, ed., Proceedings of PODS 2006 , pages 328–337.

Tiede, Hans-Jörg and Stephan Kepser. 2006. Monadic second-order logic
over trees and transitive closure logics. In G. Mints, ed., 3th Workshop on
Logic, Language, Information, and Computation.


