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ABSTRACT. A general principle for grammars for languages is that theymust usefinite means
to produce the infinitely many structures of the languages. When the termproductionis under-
stood algebraically, there are at least two notions of finiteness involved. Firstly in each set of
structures each structure is generated, i.e., the result offinitely many applications of operators.
Secondly, the set of operators as such is alsofinite. For algebraic theories, this is eo ipso the
case. But there are linguistic frameworks that are not generating but rather licensing linguistic
structures such as Head-Driven Phrase Structure Grammar orGB-Theory. Within these, struc-
tures are not generated. Rather only general properties of admissible structures are stated. But
these structures must be provided somehow. Thus one may ask if there are algebraic approaches
to licensing theories.

We show here that HPSG is non-algebraic in the following sense. There is no finite family of
operations such that the members of every finite set of feature structures can be constructed
by this finite family of operations. We also show that HPSG feature structures are abstractly
recognisable in the sense that for every set of finite HPSG feature structures there exists a (many-
sorted) algebra withfinitesort sets of infinitely many operations such that every feature structure
in that set is recognised by the algebra (seen as an abstract automaton). In other words, the first
finiteness demand can be fulfilled, the second one cannot.

9.1 Introduction

Formal frameworks for linguistic theories like tree adjoining grammars, minimalist
grammars, and context-free tree grammars belong to the generative-enumerative
paradigm (Pullum and Scholz, 2001). This paradigm can be considered as a branch
of applied recursive functions theory. Languages, under this view, consist of a set
of finite concrete structures that are enumerable by an algorithmic device. The
Chomsky hierarchy and its refinements is one of the success stories of this approach
towards a general syntactic meta-theory.

Recent years have seen the emergence of a competing paradigmwhich is not so
much inspired by a general theory of algorithms but by methods developed within
finite model theory (Ebbinghaus and Flum, 1995). According to this approach
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languages are to be viewed as sets of (finite) relational structures that satisfy a
family of constraints which are stated in a suitable logicalspecification language.
Grammatical structures are not the result of an enumerativeprocess, but they com-
prise those structures that satisfy all the constraints of alanguage. Prominent in-
carnations of this paradigm are the Government and Binding Theory (Chomsky,
1981) and Head-driven Phrase Structure Grammar (HPSG (Pollard and Sag, 1987,
1994)).

What has not been noticed before is the fact that the difference between the gen-
erative and the model-theoretic licensing paradigm is parallelled by a concomitant
distinction of data structures. To put it in a nutshell: whereas the notion of an
initial abstract data structure is fundamental for the generative-enumerative frame-
work, the dual notion of a final abstract object structure plays a similar role within
the model-theoretic framework. The definition of an initialabstract data structure
specifies in which ways elements of that structure may be generated. The central
concepts of this type of data are those of an algebra of a signature, of a congruence
relation and of induction. Familiar examples are provided by strings and trees.
The dual type of data is characterised by the corresponding notions of coalgebra,
bisimulation relation and coinduction. The elements of a final object structure are
not described in terms of a representation through their recursive buildup, but via
the attributes and methods that characterise their behaviour. The most prominent
example for such a structure is that of a labeled graph.

The difference between these two types of data structures isthe reason for the
association of strings and trees with the generative-enumerative paradigm and of
labeled graphs with the model-theoretic paradigm of syntactic frameworks. Trees
can be uniquely characterised by specifying their hierarchical structure, they can be
enumerated by means of a production system and they can be fedinto an abstract
automaton. For graphs no suitable notion of finite automatonhas been proposed.
Similarly, graph grammars do not generate their output in a way that is patterned
by an independently given hierarchical structure which would be intrinsic to this
data type.

The notion of generation often entails the existence of a finite set of operators
such that every element of the structure under consideration is the result of finitely
many applications of these operations on a finite set of constants (nullary opera-
tions). One way of interpreting this technical statement isto say that a grammar
constructs a language withfinite means, where there are two aspects of finiteness
to be distinguished. Firstly, each structure can be constructed by finitely many
applications of operations (this is the notion of generation in algebra). Secondly,
there are only finitely many different operators. These properties may be desirable
for licensing theories as well. The fact that the data structures underlying licens-
ing theories are graphs does not as such preclude such a possibility. Bauderon and
Courcelle (1987) present an algebraic approach to graphs bydefining a (generally
infinite) set of graph operations such that every finite graphcan be constructed by
finitely many applications of these graph operations. Termsconsisting of graph op-
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eration symbols are graphexpressions, they describe how a graph is constructed.
The value of such an expression is of course the graph the construction of which
it describes. Thus there is a constructive, algebraic approach to graphs. The im-
portant question is then, whether the set of graph operatorsneeded for a family of
grammatically well-formed structures is finite or not.

For the particular licensing theory HPSG we will show here that the classes of
finite graphs defined by a finite HPSG signature and grammar areindeed such that
they cannot be generated by a finite set of graph operations. The set of graph
expressions for finite HPSG graphs can in general not be generated by a regular or
even context-free tree grammar. This result is independentof the particular logic
chosen for HPSG. It just relies on standard assumptions on HPSG signatures and
grammars, as they are spelled out, e.g., by Pollard and Sag (1994).

We also show that HPSG is abstractly recognisable. This means that for every
set of HPSG feature structures defined by a grammar there exists a (many-sorted)
algebra over the possibly infinite set of graph operations where all sort sets arefi-
nite. This algebra can be seen as an abstract automaton. The automaton is abstract,
because there are infinitely many graph operations and henceinfinitely many dif-
ferent sorts. In other words, the states of the automaton aresorted. For each sort,
there are only finitely many states, but the set of all states of all sorts is infinite.
This is why the automaton cannot really be used for recognition or generation. The
notion recognisableremains abstract. But at least this finiteness property can be
established for HPSG.1

9.2 HPSG-Style Feature Structures

The data structures underlying HPSG are so-called feature structures. The proba-
bly simplest approach to them, and the one we will follow here, is to regard them
as relational structures. On this view, sorts are unary predicates and features are
binary functional predicates. HPSG feature structures arerequired to betotally
well-typedand sort resolved. Sort-resolvedness, demanding that the sorts parti-
tion the universe, is of no particular relevance here. Well-typedness restricts the
admissible correlations between sorts and features. Each sort is correlated with a
set of admissible features. And for each such feature there is an indication listing
the admissible set of sorts on the target node.Totalwell-typedness additionally re-
quires each admissible feature to be present. Thus a signature for HPSG is a triple
∆ = (S ,F ,A) whereS is a set of sorts (unary predicate symbols),F is a set of
features (binary predicate symbols), andA : S ×F →℘(S ) is anappropriateness
function. We will restrict our attention tofinite signatures, i.e., signatures withS
andF being finite sets. The restrictions imposed by a finite HPSG signature can

1Note that the fact that each single finite graph can be constructed by finitely many applications
of graph operations does in no way imply that every (possiblyinfinite) setof feature structures is
abstractly recognisable.
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be expressed as a first-order sentenceA∆, as was shown by Aldag (1997) in his
master’s thesis:

∀x
W

S∈S S(x)
∧

V

S1,S2∈S ,S1 6=S2
∀x¬(S1(x)∧S2(x))

∧
V

F∈F ∀x,y,z((F(x,y)∧F(x,z)) → y = z)
∧

V

S∈S ,F∈F ,A(S,F) 6= /0∀x(S(x) →∃y F(x,y)∧
W

S′∈A(S,F) S′(y))
∧

V

S∈S ,F∈F ,A(S,F)= /0∀x(S(x) →¬∃y F(x,y))

One would now expect that a grammar is a first-order sentence over the signature.
But a typical HPSG principle is somewhat simpler. It is a boolean combination
of path equality expressions and sort statements. A path equality expression is a
formula of the following kind:

∃y1, . . .yn∃z1, . . .zk F1(x,y1)∧ ·· ·∧Fn(yn−1,yn) ∧
G1(x,z1)∧ ·· ·∧Gk(zk−1,zk)∧yn = zk

whereF1, . . . ,Fn,G1, . . . ,Gk ∈ F . Such a formula stipulates that the two feature
pathsF1 . . .Fn andG1 . . .Gk lead to the same node. A sort statement is a formula of
the following kind:

∃x1, . . .xn F(x,x1)∧ ·· ·∧F(xn−1,xn)∧S(xn)

whereF1, . . . ,Fn ∈ F and S∈ S . It states that the node at the end of the path
F1 . . .Fn is of sortS. An HPSG principle is a boolean combination of these kinds
of formulae with the free variablex being universally quantified since the principle
is to be true at every node. A grammar is simply a conjunction of principles. We
note that for the purpose of the present paper it is immaterial if a grammar is of the
limited formula class just described or if it is any first-order sentence.

A relational structureA over a signature∆ is a model for a grammarΓ, iff A |=
A∆ ∧Γ. We will only considerfinite structures. This is linguistically justified if
one keeps in mind that such a structure is the linguistic analysis of an utterance. It
seems unclear what an infinite analysis is supposed to mean.

The two most prominent alternatives for a formalisation of HPSG are feature logics
(see, e.g., Rounds (1997) for a survey) or certain modal logics (see, e.g., (Blackburn
and Spaan, 1993; Kracht, 1995)). Since proponents of both alternatives typically
propose a weak logic, there often is a translation into first-order logic available.
For the particular example of Speciate Reeantrant Logic by King (1989) this was
shown by Aldag (1997). For modal logics, several such translation methods are
provided by Ohlbach, Nonnengart, de Rijke, and Gabbay (2001).

9.3 Graphs as Logical Structures

Almost from the beginning, feature structures were considered as particular types
of graphs. Graph-theoretically they are rooted directed hypergraphs where the sorts
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are unary edges. We will now define hypergraphs following theproposal by Cour-
celle (1990a,b) and quoting it freely where appropriate. Since all the graphs we are
dealing with are hypergraphs, we will omit the prefixhyper-. A signature or ranked
alphabetΣ is a finite setL of labels together with a functionρ : L → IN equipping
each label with an arity. In the case of HPSG, the signature consists of the unary
sort symbolsS and the binary feature symbolsF .

Definition 1 Let Σ be a signature. Aconcrete graphis a quintupleG = 〈V,E, lab,

inc, prt〉 where

– V is a set whose elements are the vertices of the graph;
– E is a set whose elements are the edges;
– lab : E → L is an edge labelling function;
– inc : E →V∗ associates with each edgee the sequence of its vertices, a se-

quence of lengthρ(lab(e));
– prt is a sequence inV∗ of vertices, theports. The length of this sequence is

the type of the graphG.

Thus a concrete graph consists of a set of vertices and a set oflabelled edges be-
tween the vertices. Vertices are labelled by unary edges. A sort of HPSG turns out
to be a unary labelled edge that is attached to a vertex. The type of an edgee is
the arity of its label, i.e,type(e) = ρ(lab(e)). The ports are needed for technical
purposes only. Agraph is the equivalence class of all isomorphic concrete graphs.
The set of graphs over a signatureΣ is denoted byGΣ.

A graph isfinite, iff both V andE are finite. As explained before, we restrict our
attention to finite graphs. This definition of graphs is very general. Edges are for
example not restricted to be binary, they may connect more than two vertices. For
a model of HPSG-style feature structures, this generality is certainly not needed.
Rather the subset of graphs that are HPSG-style feature structures aredirected
multi graphs. Multi graphs are graphs where the range ofρ is the set{0,1,2}, i.e.,
each edge is at most binary. A graph is directed if the range ofinc is generally not
symmetric, i.e., edges have a start and an end vertex. HPSG feature structures are
also rooted, but this property is of no relevance for us.

Bauderon and Courcelle (1987) define three families of graphoperations to turn a
set of graphs into a many-sorted algebra of graphs. (Other such complete families
of graph operations are presented, e.g., by Engelfriet (1997) or Courcelle (1997).)
The first family of operations isdisjoint sum. Let G andH be two graphs of types
n andn′. We can assume their sets of vertices and edges to be disjoint. ThenG⊕H
is 〈VG∪VH ,EG∪EH , labG∪ labH , incG∪ incH , prtGˆprtH〉 of typen+n′.

The second operation is theport redefinition. This operation renames or “forgets”
ports. IfG is a graph of typen andα : {1, . . . ,k} → {1, . . . ,n} then the graph after
port redefinition is〈VG,EG, labG, incG, prtG(α)〉 of typek.
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The third operation is theport fusion. It fuses port vertices, i.e., the operation
identifies groups of vertices. For every equivalence relation Ron the set{1, . . . ,n}
there is a mappingf uR taking a graphG of typen and returningG′ that is obtained
from G by identifying the ports that are in the same equivalence class ofR.

Note that each of the three families of operations contains denumerably many oper-
ators. The set of all graphs together with these three families of operations forms a
many-sorted algebra, where the sorts are just the types of the graphs. Bauderon and
Courcelle (1987) also define a (many-sorted) algebra of so-calledgraph expression
G E in the following way. It is the term algebra of the (sorted) operation symbols
of the above described graph operations together with the following constants: 0
(denoting the empty graph), 1 (denoting the graph consisting of a single vertex),a
for each labela∈ L (denoting the graph consisting of a single edge of typeρ(a) of
label a together with itsρ(a) vertices). An element of this term algebra is called
a graph expression. It can and should be seen as an instruction for constructinga
graph. The graph is the value of the expression: Since the term algebra is the free
algebra of this signature of graph operations there exists aunique homomorphism
from the algebra of graph expressions to the algebra of graphs. The value of a
graph expression is exactly the value of this homomorphism.It is now interesting
to see that the homomorphism is surjective.

Proposition 2 (Bauderon and Courcelle, 1987)Every finite graph is the value of a
graph expression.

A graph expression is a term, hence a tree. We can therefore use graph expressions
to define particular sets of graphs.

Definition 3 A set of graphs iscontext-freeiff the set of graph expressions denot-
ing this set is regular. A set of graphs isextended context-freeiff the set of graph
expressions denoting it is context-free.

As usual, a set of trees is regular iff it is generated by a regular tree grammar or,
equivalently, accepted by a tree automaton. A set of trees iscontext-free iff it is
generated by a context-free tree grammar (Rounds, 1970). The notion ofcontext-
freenessfor graphs stems from context-free graph grammars such as hyperedge
replacement grammars. It is well known that a set of graphs isthe language of
a context-free graph grammar just in case it is the value of a regular set of graph
expressions (Lautemann, 1988).

We need two notions for the size of a graph. The first one,width, is roughly the
size of the signature of the expression for that graph. The second one,treewidth, is
a measure on how tree-like a graph is.

Definition 4 Let g be a graph expression. Thewidth wd(g) is the maximal sort of
a symbol of the graph expression algebra occurring ing. Thewidthof a graphG is
wd(G) := min{wd(g) | val(g) = G}.
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Definition 5 Let G be a graph. Atree decompositionof G is a pair(T, f ) whereT
is an unrooted unoriented tree andf : VT →℘(VG) is a mapping such that
(1)VG =

S

{ f (i) | i ∈VT};
(2) for every edgee of G there is a setf (i) such that all vertices ofeare in f (i);
(3) if v∈ f (i)∩ f ( j), thenv∈ f (k) for everyk belonging to the unique loop-free
path fromi to j in T.

The width of a tree decomposition is defined asmax{| f (i)| | i ∈VT}−1, and the
treewidthof G is the smallest width of a tree decomposition ofG.

As was shown by Courcelle, the treewidth of a directed multi graph provides a
lower bound for its width.

Proposition 6 (Courcelle, 1992)Let G be a finite directed multi graph. Then
twd(G) < wd(G).

A natural and indeed very powerful choice of a logical language for graphs is
monadic second-order logic of vertices and and edges (MS2). Monadic second-
order logic extends first-order logic by the addition of set variables and quantifica-
tion over set variables. Thus the language offers existential and universal quantifi-
cation over vertices, edges, sets of vertices, and sets of edges. Many sets of graphs
can be defined in MS2 such as, e.g., planar graphs, 3-colourable graphs, or graphs
with a Hamiltonian cycle. The translation of the appropriateness function and a
grammar of a finite HPSG signature into MS2 is a simple task, in which no second
order quantification is needed.

A setC of graphs of sortn is calledabstractly recognisable, iff there exists a many-
sorted algebraA over the possibly infinite signature of graph operations with finite
universes (sort sets), a homomorphismh : G E → A, and a finite subsetFS of An

such thatC = h−1(FS). The triple(h,A,FS) is called an automaton, the setFS is
the set of final states. The homomorphismh is uniquely given due to the fact that
G E is the free algebra over the signature of graph operations.

Proposition 7 (Courcelle, 1990b)Every MS2-definable set of graphs is abstractly
recognisable.

9.4 Graph Properties of HPSG Feature Structures

We can now present a finiteness result for HPSG, namely that for each set of HPSG
feature structures defined by a grammar there exists a graph algebra over a possibly
infinite signature of operations where each sort set is finitesuch that each feature
structure is generated by this algebra. In other words
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Theorem 8 For every finite HPSG signature and grammar, the set of modelsof
that signature and grammar is abstractly recognisable.

As shown in the previous sections, every finite HPSG signature and every grammar
are MS2-definable. So, letA∆ be the MS2-sentence defining the signature andΓ
be the MS2-sentence defining the grammar. By Proposition 7, the set of models of
A∆ ∧Γ is abstractly recognisable.

This finiteness result is quite a weak one, because due to the infinite signature there
are infinitely many sort sets or universes. That means that the algebra as a whole is
not finite. It is only the universe for each sort that is finite.

It would therefore be desirable to obtain a stronger finiteness result, namely one in
which the whole algebra is finite. But such a result cannot be established, as we
will show now. We demonstrate that there is a set of finite feature structures such
that there is no graph algebra with afinitegraph operator signature which generates
this set. To do so, let us consider a special set of graphs, namely grids. Grids are
special types of planar graphs. They are the result of gluingsquares in lines and
columns. forming a rectangular shape. An example of a 6× 3 grid is given in
Figure 9.1.
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Figure 9.1: A 6×3 grid.

It is not difficult to see that HPSG formalisations allow the construction of grids.
Consider the following signature〈{s,u, r,c},{U,R}〉 with the appropriateness con-
ditions

s U s,u u R u,c
s R s, r r U r,c

wheres U s,u reads sortshas obligatory featureU and the sort at the end vertex
of U may bes or u. We suppose the grammar to be empty. The setG R of all
finite graphs that are models of this signature contains all finite grids such as the
one in Figure 9.1. It does, of course, contain many more graphs that are not grids.
But this is not of importance for us. If desired, the set of graphs can be restricted
by adding principles so that only grid-like graphs are in theset. Indeed, Courcelle
(1997) shows how to define finite grids in monadic second-order logic.
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Theorem 9 The setG R has unbounded width.

This is shown as follows.G R contains all finite grids. The treewidth of ann× k
grid is min(n,k) (see (Bodlaender, 1998)). Therefore there is no bound on the
treewidth ofG R . Since all feature structures are multi graphs, there is by Proposi-
tion 6 no bound on the width ofG R , either.

This theorem expresses that the signature for the graph expressions generatingG R
is infinite.

Proposition 10 The setG R of graphs is neither context-free nor extended context-
free.

This is a simple consequence of the fact that every tree grammar has a finite set of
productions. Thus the set of operators in terms is finite. Butthe width ofG R is
unbounded.

Corollary 11 HPSG feature structures are in general neither context-free nor ex-
tended context-free.

Unfortunately this also means that standard techniques from universal algebra or
automata theory cannot be applied. It is a philosophical questions whether graphs
similar to grids should be regarded as appropriate for linguistic analyses. There
are good reasons to believe that HPSG grammarians do not havegrid-like feature
structures in mind when they think about models of their grammars. From the
point of view of a licensing theory this would mean that additional principles have
to be added that generally state desirable graph propertiesof the intended model.
But most logics for HPSG, including (R)SRL and modal logics,are not powerful
enough to formulate principles that exclude grid-like feature structures (and only
these).

There is an interesting analogon in formalisations of GB-theory. Rogers (1998)
showed that under the assumption of free indexation, an assumption that is standard
in this theory, the construction of grids cannot be excludedeither.

One obvious way to remedy the problem for HPSG is to demand of aclass of
models to be generable by a context-free graph grammar. Sucha demand cannot
be postulated as a principle but would have to be extrinsic. An interesting conse-
quence of such a demand would be that treebanks for HPSG couldbe queried in
time linear in the size of the treebank using MS2 as a query language.
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