
Chapter 5

Model Checking Secondary Relations

STEPHAN KEPSER, UWE MÖNNICH, AND FRANK MORAWIETZ

ABSTRACT. In this paper we present an approach to model checking of mildly context-sensitive
relations with purely regular means. The approach is based on a generalisation of the classical
result that the intersection of a context-free language and a regular one is a context-free language
which consists in defining context-freeness in terms of least fixed points of sets of equations
over union and concatenation operators. When formalising (linguistic) trees using projection
and composition as operators it is possible to characterise structures that are definable by linear
context-free tree grammars and can hence be mildly context-sensitive. Since the translation of
tree algebras using projection and composition operators into tree algebras familiar to linguists
can be defined by monadic second-order transductions, the corresponding automaton theory can
be put to use to query mildly context-sensitive secondary relations with purely regular means.

5.1 Introduction

Regarding linguistic data structures as relational structures makes them amenable
to the techniques of model checking. The basic question in this area concerns the
problem of how to devise efficient procedures that tell structures exhibiting a cer-
tain property from those that lack this property. As these properties are expressed
by means of logical formulae, one can also regard the problem of model checking
as a form of querying relational structures. Of special interested in this connection
are formulae in the language of monadic second-order logic (MSO).

In the present paper we try to take advantage of a powerful generalisation of the
classical result that the intersection of a context-free language and a regular one is a
context-free language. The generalisation consists in defining a family of structures
as context-free if it is a component of the least fixed-point of a system of equations
over a finite set F of operations. In the particular case of context-free languages,
the equations are expressed with the operations of union and concatenation. Using
instead a distinguished set of projection and composition operations it becomes
possible to characterise structures by means of appropriate systems of equations
that are located on higher levels of the Chomsky hierarchy. Based on the particular
set of operation symbols just mentioned the whole family of indexed languages can
be accommodated within this framework.

The extension of the classical result concering the intersection of context-free
and regular languages depends on an important property the set T

�
F � of trees

65

Proceedings of Formal Grammar 2002
G. Jäger, P. Monachesi, G. Penn & S. Wintner (editors).
Chapter 5, Copyright c

�
2002, Kepser, Mönnich, and Morawietz.

Model Checking Secondary Relations: Kepser, Mönnich, and Morawietz /66

over F and the associated evaluation valF which sends these trees into the in-
tended structures has to satisfy. This property has been called MSO compatibility
by Courcelle and Walukiewicz (1998) and requires of a (partial) mapping f from
structures S

�
Σ � over the signature Σ into structures S

�
Σ ��� over the signature Σ � that

for every MSO-sentence ϕ one can produce a backwards translation f � 1 � ϕ � such
that

S � � f � 1 � ϕ � iff f
�
S ��� � ϕ

for every structure S in the domain of f . Given the well-known fact that MSO
definability on trees is equivalent to recognisability by finite tree automata the gen-
eralisation of the classical result follows immediately once the set of operators F
under consideration is MSO compatible.

In a series of papers (Kolb et al. 2000a,b; Michaelis et al. 2001; Morawietz
and Mönnich 2001) Mönnich, Morawietz, Kolb, and Michaelis have shown that
the evaluation that interprets trees over projection and composition within the do-
main of structures familiar to linguists can be expressed as a simple form of MSO
transduction (de f∆

�
MSO �). Such a transduction defines the intended structure, i.e.,

val
�
t � , for t 	 T

�
F � , within the input structure t on the basis of a finite set of MSO

formulae written in the signature of the input structure. These defining formu-
lae can then be used for the backwards translation (de f∆

�
MSO � � 1) of a property

that is expressed by an MSO formula over the target signature. Succinctly: MSO
transductions are MSO compatible.

As it turns out, this relationship between the hierarchical structure of trees over
composition and projection and their intended interpretation provides the founda-
tion for a very flexible model checking procedure. Suppose one is dealing with a
class of structures that exhibit a certain number of secondary relations. For con-
creteness assume that these relations indicate the sort of context-sensitive depen-
dencies which have been at the focus of attention of linguists. As has been noticed
since the beginning of formal language theory certain grammatical phenomena like
morphological congruences (in, e.g., Bambara) and cross-serial dependencies be-
tween case markings (in Swiss German) are outside the realm of context-free lan-
guages and need for their descriptive analysis a (limited) amount of contextual
information (Shieber 1985). Due to this character of context-sensitivity that comes
with a range of grammatical constructions, even monadic second-order logic, nor-
mally considered a powerful query language, is too weak to capture these phenom-
ena.

Taking our inspiration from the concept of MSO compatibility we regard gram-
matical categories as basic constants of a many-sorted algebra with a distinguished
set of composition and projection symbols. Through the explicit introduction of
these operations it becomes possible to turn the data models of contemporary syn-
tactic theories into a kind of labeled tree structures that can either be generated by
regular tree grammars or are identifiable with collections of finite trees specifiable
by formulae of MSO logic.

In the particular case of the verbal complex of Swiss German mentioned above

67
 Formal Grammar 2002

it is easy to describe in MSO terms the two verbal and nominal clusters, respec-
tively. What is problematic from the point of view of regularity is the set of fixed
syntactic and semantic relations between the verbal elements and their case-marked
arguments. In other words, an MSO specification of these bipartite structures
would return – regarding the MSO specification as a yes/no query – structures
that do not satisfy the particular set of cross-serial dependencies characteristic of
the instance of context-sensitivity under discussion. Despite this lack of expres-
sive power of the chosen query language the general approach adumbrated above
is remarkably effective in filtering out the syntactic “noise” from the query result.
Since the explicit algebraic structures are elements of a regular family of trees it is
again easy to produce an MSO formula that characterises exactly these cross-serial
dependencies among the explicit structures that were out of the reach of the query
language on the intended linguistic level.

Generalising from the particular problem of cross-serial dependencies in natu-
ral languages the impact of the classical result from formal language theory men-
tioned above can be described as follows. If a set of operations F and the asso-
ciated interpretation function valF satisfy the condition of MSO compatibility, the
subset of structures within a context-free language L (in the general sense) that
fulfil a certain MSO formula ϕ is context-free. In symbols:�

S � S � � ϕ � S 	 L �	 CF

Relying again on the fact that MSO definability is equivalent to recognisability by
finite tree automata the subset of L specified by the formula ϕ can be given an
efficient regular description on the level of trees T

�
F � .

It has been shown that this method of regularising queries of context-sensitive
structures can be adapted to most grammatical phenomena that fall within the reach
of current linguistic theories (see the list of papers cited above). Since our data
model is firmly entrenched in the linguistic tradition where trees with a limited
amount of cross-serial dependencies play a prominent role, we are able to restrict
our attention to two constructors denoting the familiar operations of composition
and projection. This advantage which is provided by the considerable reduction
of the set of primitive constructors does not lead directly to a family of canonical
expressions that suits our purposes. As was noted above a query whose expressive
power does not go beyond MSO is too weak to specify an answer set displaying the
sort of dependencies so characteristic of natural language structure. It is therefore
necessary to translate the result of the query into a family of trees that can be
checked by a suitable constraint formula for the intended dependencies. It can be
shown that this translation of the first step is tightly controlled by the constraint
formula. Using the constraint formula as a template for the translation process
allows us to avoid the problem of context-sensitive parsing without being forced to
consider the unbounded set of ”lifted” expressions denoting the same tree. A paper
explaining the details and describing an implementation is in preparation.

The idea of using composition and projection as operations on trees is a special
case of a general approach developed by Mezei and Wright (1967) in which regu-

Model Checking Secondary Relations: Kepser, Mönnich, and Morawietz /68

lar tree languages denote subsets of arbitrary algebras. Of particular relevance for
the present application to context-sensitive query problems have been the contri-
butions of Courcelle (1990) to the interaction between graph operations and MSO.
Courcelle has devised a primitive set of operations such that any finite graph can
be considered as the value of a term that is constructed from (symbols for) these
primitive operations. In a recent paper Courcelle and Knapik (2002) prove that the
mapping which associates a term t over a complete set of graph operations with its
evaluation val

�
t � is an MSO-transduction (Proposition 2.5).

The method of turning the classical result from formal language theory into a
powerful model checking procedure can also be put to use in the context of recent
attempts to specify a common logical level for linguistic databases. As has been
emphasised by Cotton and Bird (2002) the proliferation of linguistic databases with
their bewildering diversity of formats and software tools makes it necessary to in-
tegrate them into a general multilayer annotation system. For the special case of
treebank formats the authors show how they can be mapped onto the annotation
graph model serving as a common logical level. Since the annotation graph model
can be regarded as a special type of relational structure it is again easy to verify
that the mapping from the entries of a treebank into annotation graphs is an inter-
pretation along the lines of an MSO-transduction.

5.2 Preliminaries

Recall that for a given set of sorts S , a many-sorted alphabet Σ (over S) is an
indexed family � Σw � s � w 	 S ��� s 	 S � of disjoint sets. A symbol σ 	 Σw � s is an
operator of type � w � s � , arity w, sort s and rank �w � . The elements of Σε � s are also
called constants (of sort s).

In case S is a singleton set
�
s , i.e., in case Σ is a single-sorted or ranked

alphabet (over sort s), we usually write Σn to denote the (unique) set of operators of
rank n 	�� . In later sections of the paper we will mainly use the single-sorted case
of alphabets. We will indicate the need for many-sorted alphabets where necessary.

For such a ranked alphabet Σ, we denote by T
�
Σ � the set of trees over Σ. T

�
Σ �

is inductively defined with base case Σ0 � T
�
Σ � and recursive step f

�
t1 ��������� tn ��	

T
�
Σ � if f 	 Σn and ti 	 T

�
Σ � for i � 1 ��������� n.

We fix an indexed set X � � x1 � x2 �������� of variables and denote by Xn the subset�
x1 ��������� xn . Variables are considered to be constants, i.e., operators of rank 0. For

a ranked alphabet Σ the family T
�
Σ � X � is defined to be T

�
Σ
�
X ��� , where Σ

�
X � is the

ranked alphabet with Σ
�
X � 0 � Σ0 � X and Σ

�
X � n � Σn for every n �� 0. A subset L

of T
�
Σ � is called a tree language over Σ.

5.3 Hierarchical Decomposition and Model Checking

The aim of the paper is to provide a way to check secondary relations in a linguistic
database. A database in our sense is just a set of relational structures. As mentioned

69
 Formal Grammar 2002

above, we use monadic second-order logic for querying the database. A query is
therefore an MSO-formula, and the answer to a query is the set of all those struc-
tures in the database for which this formula is true. But since MSO is restricted to
context-free phenomena, we need a device to specify the mildly context-sensitive
secondary relations a linguist may be interested in. This device is a grammar. That
is to say the linguist has to specify a grammar that generates the structures he is in-
terested in. Obviously, this requires the grammar formalism to be more expressive
than context-free (string) grammars. The largest class of grammars suitable for our
approach is the class of linear context-free tree grammars.

Definition 1 [Context-Free Tree Grammar] Let S be a singleton set of sorts. Then
a context-free tree grammar (CFTG) for S is a 5-tuple Γ � � Σ �"!#� S �%$��'&(� , where
Σ and ! are ranked alphabets of inoperatives and operatives over S , respectively.
S)! is the start symbol, $ is a countable set of variables, and & is a set of pro-
ductions. Each p 	*& is of the form F

�
x1 ��+�+�+,� xn �.-0/ t for some n)� , where

F)! n, x1 ��+�+�+,� xn 	1$, and t 	 T
�
Σ � !2� � x1 ��+�+�+,� xn 3� . The grammar is linear, iff

each variable occurs at most once on the left hand side and at most once on the
right hand side of a production.

Intuitively, an application of a rule of the form F
�
x1 ��������� xn �(/ t “rewrites” a

tree rooted in F as the tree t with its respective variables substituted by F’s daugh-
ters. A context-free tree grammar generates elements of a tree substitution algebra
DT
�
Σ � X � .
A CFTG Γ �4� Σ �"!#� S �%$��'&(� with ! n � /0 for n 5 0 is called a regular tree gram-

mar (RTG). Since RTGs always just substitute some tree for a leaf-node, it is easy
to see that they can only generate recognisable sets of trees, a forteriori context-
free string languages (Mezei and Wright 1967). If ! n is non-empty for some n �� 0,
that is, if we allow the operatives to be parameterised by variables, however, the
situation changes. CFTGs in general are capable of generating sets of structures,
the yields of which belong to the subclass of context-sensitive languages known as
the indexed languages.

An example of a grammar formalism used in linguistics that can express certain
mildly context-sensitive relations is Tree Adjoining Grammar (Joshi and Schabes
1997; Vijay-Shanker and Weir 1994). TAG is known to be weakly equivalent to
so-called monadic context-free tree grammars, as was shown independently by
Mönnich (1997) and Fujiyoshi and Kasai (2000). Another example are minimalist
grammars in the sense of Stabler (2001), which are equivalent to certain types of
multiple context-free grammars (Michaelis et al. 2001).

In order to be able later on to find the desired context-sensitive relations, it is
necessary that the actual grammar is such that it generates all those trees which em-
body non-context-free relations. It need not be a grammar for a single query. But
it should usually not be a general grammar for the entire database either, because
it will be used as a filter.

Let us illustrate the above by means of an example. The following CFTG
generates the mildly context-sensitive language anbncndn.

Model Checking Secondary Relations: Kepser, Mönnich, and Morawietz /70

Example 2 Consider the CFTG Γ �6� � a � b � c � d � ε � St � S0
t 7� � S � S � � S1 � S2 � a � b � c � d 7� S � ��

x 7�'&(� with & given as follows
S � -8/ S

�
ε � a -8/ a

S
�
x �(-8/ S1

�
S
�
S2
�
x ����� b -8/ b

S
�
x �(-8/ S0

t
�
x � c -8/ c

S1
�
x �(-8/ St

�
a � x � d � d -0/ d

S2
�
x �(-8/ St

�
b � x � c �

An example of a tree generated by this grammar is shown in Figure 1.1.

In order to apply the general approach adumbrated in the introduction to the
kind of secondary relations that can be accommodated within the framework of
context-free tree grammars we need an appropriate set of operations that subtend
the necessary hierarchical decomposition. The in-
tuition here is that the basic assumptions about the
operations of a tree grammar, namely tree substitu-
tion and argument insertion, are made explicit. We
make them visible by inserting the “control” infor-
mation which allows us to code the resulting struc-
tures with regular means, i.e., regular tree grammars
or finite-state tree automata and therefore with MSO
logic. The intuition behind this LIFTing process is
that each term compactly encodes information such
as composition and concatenation.
In the following, we will briefly describe LIFTing on

St

a St

a S0
t

St

b St

b ε c

c

d

d

Figure 5.1: Sample tree

a more formal level. All technical details, in particular concerning many-sorted sig-
natures, can be found in a paper by Mönnich (1999). Any context-free tree gram-
mar Γ for a singleton set of sorts S can be transformed into a regular tree grammar
ΓL for the set of sorts S � , which characterises a (necessarily recognisable) set of
trees encoding the instructions necessary to convert them by means of a unique
homomorphism h into the ones the original grammar generates (Maibaum 1974).
This unique homomorphism h is nothing else but the evaluation mapping val dis-
cussed above. The “LIFTing” is achieved by constructing for a given single-sorted
signature Σ a new, derived alphabet (an S � -sorted signature) ΣL, and by translating
the terms over the original signature into terms of the derived one via a primitive
recursive procedure. The LIFT-operation takes a term in T

�
Σ �%$ k � and transforms

it into one in T
�
ΣL � k � . Intuitively, the LIFTing eliminates variables and composes

functions with their arguments explicitly, e.g., a term f
�
a � b �9� f

�
x1 � x2 �2: � a � b � is

lifted to the term c
�
c
�
f � π1 � π2 �;� a � b � . The old function symbol f now becomes a

constant, the variables are replaced with appropriate projection symbols and the
only remaining non-nullary alphabet symbols are the explicit composition sym-
bols c. The trees over the derived “LIFTed” signature consisting of the old linguis-
tic symbols together with the new projection and composition symbols form the
carrier of a free tree algebra T L.

71
 Formal Grammar 2002

Definition 3 [LIFT] Let Σ be a ranked alphabet of sort S and $ k � � x1 ��������� xk ,
k 	<� , a finite set of variables. The derived many-sorted S � -sorted alphabet ΣL is
defined as follows: For each n = 0, Σ �ε � n � � f � � f 	 Σn is a new set of symbols
of type � ε � n � ; for each n = 1 and each i � 1 > i > n, πn

i is a new symbol, the ith
projection symbol of type � ε � n � ; for each n � k = 0 the new symbol c ? n � k @ is the�
n � k � th composition symbol of type � nk1 +�+�+ kn � k � with k1 �A+�+�+B� kn � k.

ΣL
ε � 0 � Σ �ε � 0

ΣL
ε � n � Σ �ε � n � � πn

i � 1 > i > n for n = 1

ΣL
nk1 C C C kn � k �

�
c ? n � k @ for n � k = 0 and ki � k for 1 > i > k

ΣL
w� s � /0 otherwise

For k = 0, LIFTΣ
k : T

�
Σ �%$ k �D/ T

�
ΣL � k � is defined as follows:

LIFTΣ
k
�
xi �D� πk

i

LIFTΣ
k
�
f �D� c ? 0 � k @ � f � � for f 	 Σ0

LIFTΣ
k
�
f
�
t1 ��������� tn ���D� c ? n � k @ � f � � LIFTΣ

k
�
t1 �E��������� LIFTΣ

k
�
tn ���

for n = 1 � f 	 Σn and t1 ��������� tn 	 T
�
Σ � Xk �

Note that this very general procedure allows the translation of any term over
the original signature. The left hand side as well as the right hand side of a rule
of a CFTG Γ �F� Σ �"!2�%$G� S �'&(� is just a term belonging to T

�
Σ � !2�%$.� , but so is,

e.g., any structure generated by Γ. Further remarks on the observation that the
result of LIFTing a CFTG is always an RTG can be also found in the paper by
Mönnich (1999). To further illustrate the techniques, we present the continuation
of Example 2. Note that for better readability, we omit all the 0- and 1-place
composition symbols.

Example 4 Let ΓL �6� � a � b � c � d � ε � St � S0
t 7� � S � S �H� S1 � S2 � a � b � c � d ,� S �H�'&(� with & given

as follows
S � -0/ c ? 1 � 0 @ � S � ε �
S -0/ c ? 1 � 1 @ � S1 � c ? 1 � 1 @ � S � c ? 1 � 1 @ � S2 � π1

1 �����
S -0/ c ? 1 � 1 @ � S0

t � π1
1 �

S1 -0/ c ? 3 � 1 @ � St � a � π1
1 � d �

S2 -0/ c ? 3 � 1 @ � St � b � π1
1 � c �

Note that we now have only nullary operatives but extra composition and pro-
jection symbols: The linguistic non-terminals have become constants. An example
tree generated by this LIFTed grammar is shown in Figure 5.2. It is the LIFTed tree
corresponding to the sample tree of Figure 1.1.

Our main result provides a basis for a definition of the linguistically meaning-
ful structures of the tree substitution algebra within the trees of the LIFTed algebra.

Model Checking Secondary Relations: Kepser, Mönnich, and Morawietz /72

I;J�K'L MON
I;J�K'L K%N

I JQP�L K%N
RTSVUXW KKZY

I J�KOL K%N
I J�KOL K%N

I JQP�L K%N
RTSVU[W KK\Y

I J�KOL K%N
I J�K'L K]N
R MS W KK

I J�K'L K]N
I J^P_L K%N

RTSa`bW KKZc
W KK

I J�KOL K%N
I JQP_L K]N

RTSa`bW KK c
W KK

d

Figure 5.2: Intended relations on a LIFTed tree

Actually, it consists of a variant of the classical technique of interpreting one rela-
tional structure inside another one. The particular variant we use is due to Cour-
celle (1997) and interprets the domain and the relations on the substitution trees by
means of suitable MSO formulae written in the signature of the LIFTed algebra.

Proposition 5 The evaluation val from the free LIFTed algebra T L into the tree
substitution algebra DT

�
Σ � X � is an MSO-transduction

de f∆
�
MSO � : T L / DT

�
Σ � X �E�

The idea for the proof of this proposition is due to Kolb (1999). As explained
in detail in the paper by Morawietz and Mönnich (2001), it is possible to anal-
yse the elements of T L in such a way that the mapping from the free LIFTed tree
algebra into the tree substitution algebra can be simulated by a tree walking au-
tomaton with so-called MSO-tests. The walks on a tree this automaton accepts
connect nodes that satisfy the relations on the substitution trees. Bloem and En-
gelfriet (1997) showed that the relations recognised by tree walking automata with
MSO-tests can be defined by MSO-formulae, thereby providing the desired logi-
cal definitions of the target relations. In other words, the intended relations of a
tree of the tree substitution algebra can be reconstructed in its corresponding lifted
tree. An example thereof is given in Figure 5.2 where the grey shaded arcs show
the reconstruction paths for obtaining the intended tree from Figure 1.1. As an
immediate consequence of the above proposition one has the following

Corollary 6 The transformation of trees in T L by means of composing and pro-
jecting subterms is MSO-compatible.

73
 Formal Grammar 2002

Lifted Trees
(with CS structures) Tree Automaton e Tree Automaton

Intended Trees
“Lifted” Query

(MSO)
Regular Tree Grammar

(lifted linear CFTG)

Database
Query
(MSO)

Grammar
(linear CFTG)

Lifting

Translation

de f∆(MSO)−1

Automaton
Construction

Generate

de f∆(MSO)

Membership
Test

Figure 5.3: Overview of the approach

According to the corollary any MSO query ϕ addressed at the database can be
translated into a query val � 1 � ϕ � , i.e., the result of replacing the relation symbols
occurring in ϕ by their images under de f∆

�
MSO � � 1, phrased by means of the de-

rived vocabulary incorporating the composition and the projection symbols. By
the well-known equivalence between tree automata and MSO formulae val � 1 � ϕ �
has a translation into a corresponding tree automaton. The same transformation
applied to the regular tree grammar which is the result of LIFTing the context-free
tree grammar in the background of the supposed database produces another tree au-
tomaton. Intersection of these two automata produces an automaton A that accepts
only structures that are in conformity with both the background grammar and the
“lifted” query val � 1 � ϕ � . Using this automaton A in generation yields a set of lifted
trees with context-sensitive relations. As explained above, the set of intended trees
is gained thereof via the MSO transduction de f∆

�
MSO � . Since the linear context-

free tree grammar describing the desired context-sensitive secondary relations is
supposed to be general in nature, the set of intended trees may contain trees not
present in the database. Therefore it is necessary to perform a simple membership
test on the database to retrieve the final answer set. Figure 5.3 gives an overview
of our approach as we described it above.

5.4 Conclusion

In this paper, we presented an approach to model checking of context-sensitive
relations with purely regular means. At the heart of this approach lies the insight
that lifting a context-free tree grammar results in a regular tree grammar, which,
since it is regular, can again be handled by monadic second order logic and its
associated automata theory. The seeming contradiction of using regular means to
query mildly context-sensitive relations gets resolved by the old result (see, e.g.,

Model Checking Secondary Relations: Kepser, Mönnich, and Morawietz /74

Courcelle (1990)) that the application of MSO-definable transductions on MSO-
definable structures results in structures that may no longer be MSO-expressible.

Due to space restrictions we were not able to describe all the methods presented
here in full mathematical detail. The interested reader is asked to consult the pa-
pers by Kolb et al. (2000a,b); Michaelis et al. (2001) and in particular the one by
Morawietz and Mönnich (2001).

Stephan Kepser, Uwe Mönnich, and Frank Morawietz
Theoretical Computational Linguistics Group
University of Tübingen, Germanyf
kepser,um,frank g @sfs.uni-tuebingen.de

Bibliography

Bloem, R. and J. Engelfriet (1997). Characterization of properties and relations
defined in Monadic Second Order logic on the nodes of trees. Technical Report
97-03, Dept. of Computer Science, Leiden University.

Cotton, S. and S. Bird (2002). An integrated framework for treebanks and multi-
layer annotations. In Proceedings LREC 2002, pp. 1670–1677.

Courcelle, B. (1990). Graph rewriting, an algebraic and logic approach. In J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, volume B, pp. 193–
242. Elsevier.

Courcelle, B. (1997). The expression of graph properties and graph transforma-
tions in monadic second-order logic. In G. Rozenberg, ed., Handbook of Graph
Grammars and Computing by Graph Transformation. Vol. I: Foundations, pp.
313–400. World Scientific.

Courcelle, B. and T. Knapik (2002). The evaluation of first-order substitution is
monadic second-order compatible. Theoretical Computer Science.

Courcelle, B. and I. Walukiewicz (1998). Monadic second-order logic, graph cov-
erings and unfoldings of transition systems. Annals of Pure and Applied Logic,
92:35–62.

Fujiyoshi, A. and T. Kasai (2000). Spinal-formed context-free tree grammars.
MST: Mathematical Systems Theory, 33.

Joshi, A. and Y. Schabes (1997). Tree adjoining grammars. In G. Rozenberg and
A. Salomaa, eds., Handbook of Formal Languages, volume 3: Beyond Words of
Handbook of Formal Languages, pp. 69–123. Springer, Berlin.

75
 Formal Grammar 2002

Kolb, H.-P. (1999). Macros for minimalism? In Kolb and Mönnich (1999), pp.
231–258.

Kolb, H.-P., J. Michaelis, U. Mönnich, and F. Morawietz (2000a). An operational
and denotational approach to non-context-freeness. To appear in: Theoretical
Computer Science.

Kolb, H.-P. and U. Mönnich, eds. (1999). The Mathematics of Syntactic Structure.
Mouton de Gruyter.

Kolb, H.-P., U. Mönnich, and F. Morawietz (2000b). Descriptions of cross-serial
dependencies. Grammars, 3(2/3):189–216.

Maibaum, T. (1974). A generalized approach to formal languages. J. Comput.
System Sci., 88:409–439.

Mezei, J. and J. Wright (1967). Algebraic automata and contextfree sets. Informa-
tion and Control, 11:3–29.

Michaelis, J., U. Mönnich, and F. Morawietz (2001). On minimalist attribute gram-
mars and macro tree transducers. In Rohrer et al. (2001), pp. 287–326.

Mönnich, U. (1997). Adjunction as substitution. In G.-J. M. Kruijff, G. Morill,
and R. Oehrle, eds., Formal Grammar ’97, pp. 169–178.

Mönnich, U. (1999). On cloning contextfreeness. In Kolb and Mönnich (1999),
pp. 195–229.

Morawietz, F. and U. Mönnich (2001). A model-theoretic description of tree ad-
joining grammars. ENTCS, 53.

Rohrer, C., A. Roßdeutscher, and H. Kamp, eds. (2001). Linguistic Form and its
Computation. University of Chicago Press.

Shieber, S. (1985). Evidence against the context-freeness of natural language. Lin-
guistics and Philosophy, 8:333–343.

Stabler, E. (2001). Minimalist grammars and recognition. In Rohrer et al. (2001).

Vijay-Shanker, K. and D. Weir (1994). The equivalence of four extensions of
context-free grammars. Mathematical Systems Theory, 27(6):511–546.

