
On the Complexity of RSRL

Stephan Kepser∗
SFB 441, University of T̈ubingen

Nauklerstr. 35, 72074 T̈ubingen, Germany
kepser@sfs.uni-tuebingen.de

Abstract

In this paper we present a computability and a complexity result on Relational
Speciate Reentrant Logic (RSRL). RSRL is a description logic designed to for-
malise the linguistic framework and theory Head-Driven Phrase Structure Gram-
mar. We show here that given an RSRL-formula and a finite RSRL-interpretation
it is in general not decidable if the formula is true in the given interpretation by
reduction to Post Correspondence Problems. For so-called chainless RSRL, a
semantically weaker version in which the expressive power of RSRL is signifi-
cantly reduced, we show that if a class of finite structures is definable in chainless
RSRL it is decidable by a Turing machine polynomially time bounded in the size
of the input structures.

1 Introduction

RELATIONAL SPECIATE REENTRANT LOGIC (henceforce RSRL, [11, 12]) is a de-
scription logic designed by Frank Richter, Manfred Sailer, and Gerald Penn to for-
maliseHEAD-DRIVEN PHRASE STRUCTURE GRAMMAR [8, 9]. HPSG is one of the
leading paradigms in current linguistic research. It is in particular characterised by a
high degree of formalisation and in opposite to its contender GB non-transformational.
RSRL is based onSPECIATE REENTRANT LOGIC [5, 6], a feature logic for HPSG de-
veloped by King. RSRL, as SRL, is a description logic, it is designed to describe
(linguistic) entities and not to talk about truth. A description of this logic can be true
or false of an object. Therefore the denotation of such a description are those objects
on which the description fits or for which the description is true. A linguistic entity is
described mainly by sorts and features. Sorts describe the type of the entity, such as
word or phraseor subcat; they act as unary relations partitioning the domain of dis-
course. Features describe sub-parts of entities such as thePHON (phonetic/phonologic)
or SYNSEM (syntactic and semantic) sub-parts of aword. The main two extensions of
RSRL over SRL is the introduction of arbitrary relations and quantification. Relations
and quantification are specific to RSRL and not classical. Richter [11] argues at length
that these extensions are required to fully formalise the principles of HPSG [9]. Here,
we will not enter into the linguistic discussion. Neither can we explain the design

∗This research is supported by a DFG-grant (SFB 441-01).

1

goals of RSRL. We will rather investigate computational and complexity properties of
RSRL. In doing so we want to contribute to a better understanding of this feature logic,
that is by some people regarded asthe logic for HPSG.

The notion of the complexity of a logic stems from descriptive complexity theory. In
principle, classes of finite structures can be defined in (at least) two different fashions.
Classically, classes of structures are defined by logical axiomatisations. Hence it is the
expressive power of the logic that decides which classes can be defined. Computation-
ally, classes of structures can be defined by means of the computing devices that can
compute if a candidate structure belongs to the class or if it does not. Hence it is the
computational complexity that decides which classes can be defined. Descriptive com-
plexity theory bridges between these two approaches by investigating the relationship
between the expressive power of a logic on the one side and the complexity of a com-
puting machine on the other. So, there are two questions: Given classes of structures
defined in a particular logic, what is the required computational power to decide these
classes? An example answer is that classes of structures defined in classical first order
logic plus transitive closure require LOGSPACE-bounded non-deterministic Turing
machines. And given classes of structures decided by some computing machine, what
is the logic that can define these classes? Again an example answer is that classes of or-
dered structures that can be decided by LOGSPACE-bounded non-deterministic Turing
machines can be axiomatised by first order logic plus transitive closure. Thus on finite
ordered structures first order logic with transitive closure and LOGSPACE-bounded
non-deterministic Turing machines define exactly the same classes of structures, as
Immerman showed [3].

In this paper, we start from classes of finite structures definable in RSRL and search
for the computing device that is required to decide these classes. To do so, we will sys-
tematically distinguish between two types of RSRL: RSRL as defined by Richter and
so-called chainless RSRL, which is a semantically weaker version of RSRL. Richter
introduces the notion of a chain. A chain is a potentially empty, finite sequence of
objects in the denotation domain. One of the peculiarities of RSRL is the fact that the
denotation of a variable may not only be a single object, but also a chain of objects.
In chainless RSRL, a variable is always assigned to a single object. So, the syntax of
RSRL and chainless RSRL are identical, while the semantics differs in that the deno-
tation domain of a variable in chainless RSRL is always a single object of the universe
(as is the case in classical logic) while it can be a single object or a chain of objects
in (general) RSRL. Unsurprisingly, the introduction of chains has quite an impact on
the expressive power and computability of RSRL, as we will show. Richter [11] ar-
gues that they are necessary to formalise the meaning of HPSG-principles that contain
references to sets or lists like, e.g., theSUBCATEGORIZATION Principle.

After a short formal introduction to RSRL in the second section we present the first
main result in the third one by showing that truth of a formula in a finite RSRL-
interpretation is undecidable. Kepser showed in [4] that satisfiability of an SRL-
formula is decidable, while King and Simov [7] proved the stronger notion of gram-
maticality of an SRL-formula to be undecidable. It is well known that satisfiability of
classical first order logic is undecidable [1]. On the other hand, first order logic plus
transitive closure is in LOGSPACE, as Immerman [3] showed. That is to say, given
a formula of first-order logic with transitive closure and a finite first order structure,

2

the complexity to calculate whether the formula holds true in the given structure is
LOGSPACE bounded by the size of the structure. It turns out that the corresponding
question for RSRL, namely given an RSRL-formula and a finite RSRL-structure, is the
formula true in the structure is in general undecidable. The undecidability is proven
by showing that Post Correspondence Problems can be coded in RSRL using chains.
This result is quite remarkable since it shows that the seemingly innocent addition of
chains is really a one with far reaching consequence. Checking the truth or falsehood
of a formula in afinitestructure is amongst the minimal requirements one can put onto
a logic. Also, King and Simov’s undecidability proof needs infinite structures. We
remain in the realm of finite structures, and the introduction of chains, which are also
finite, is motivated by linguistic needs.

The fourth section shows that chainless RSRL is in PTIME. After we saw the impact
of allowing chains it is natural to ask where does RSRL stand if chains were removed.
One can show that the classes of finite structures definable in chainless RSRL are de-
cidable by PTIME-bounded Turing machines. To state that differently, given a Turing
machine that represents a chainless RSRL formula and a finite RSRL-structure as in-
put to the machine, the denotation of the formula in that structure can be computed
in a time polynomial to the size of the structure. Or taken chainless RSRL as a query
language, the complexity class of evaluating a query in a finite structure is PTIME.
This result is a lot closer to the classical result for first order logic. That we still end up
in a different complexity class is a consequence of the fact that RSRL is a description
logic, as we will argue below.

2 RSRL

RSRL is a logic designed to describe HPSG-feature structures. An HPSG feature
structure is a directed rooted finite hyper graph of a particular kind with sorts as node
labels and features as edge labels. Features are functional. The distribution of sorts
and features is not arbitrary, there are strong co-occurrence restrictions that allow the
appearance of certain features only in the context of certain sorts. An example of how
an HPSG feature structure looks like is given in Figure1. It is the structure of the
English pronounshe([9], p. 17).

A full introduction to RSRL in its linguistic motivations or design decisions is far be-
yond the scope of this paper. This section rather summarises the technical definitions
of RSRL that define its core. It is an excerpt of Chapter 3.1.1 “The Description Lan-
guage” of [11] where a rich explanation with examples of all the technical definitions
that follow can be found.

Definition 1 Σ is asignatureiff

Σ is a septuple〈G ,v,S ,A ,F ,R ,AR 〉,
〈G ,v〉 is a partial order of sorts,

S =
{

σ ∈ G
∣∣∣∣
for eachσ′ ∈ G ,
if σ′ v σ thenσ = σ′

}
, the set of most specific sorts

A is a set of attributes or features,

3

Figure 1:Structure of the English pronounshe

F is a partial function from the Cartesian product ofG andA to G ,
for eachσ1 ∈ G , for eachσ2 ∈ G and for eachα ∈ A ,

if F 〈σ1,α〉 is defined andσ2 v σ1

thenF 〈σ2,α〉 is defined andF 〈σ2,α〉 v F 〈σ1,α〉,
R is a finite set of relation symbols, and
AR is a total function fromR to IN+, the arities of the relations.

The partial order〈G ,v〉 of sorts exists mainly for linguistic purposes. The technically
relevant part of it is the setS of its most specific sorts. Therefore, other than in this
section, the partial order will remain unmentioned in our work.F defines compati-
bility restrictions between sorts and features. It enables the linguist to state that only
certain sorts and features may co-occur.

SupposeM is a set.M∗ is the set of finite strings overM, including the empty string.
We will refer to it as the set of finite sequences of elements ofM. Similarly, M+

is the set of nonempty finite sequences of elements ofM. For convenience, we will
henceforth writeM as an abbreviation forM]M∗.

RSRL signatures are interpreted as follows:

Definition 2 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, I is a Σ interpretation
iff

4

I is a quadruple〈U,S,A,R〉,
U is a set, the universe or carrier,
S is a total function fromU to S ,
A is a total function fromA to the set of partial functions fromU to U,
for eachα ∈ A and eachu∈ U,

if A(α)(u) is defined
thenF 〈S(u),α〉 is defined, andS(A(α)(u))v F 〈S(u),α〉, and

for eachα ∈ A and eachu∈ U,

if F 〈S(u),α〉 is defined thenA(α)(u) is defined,

R is a total function fromR to the power set of
S

n∈IN
U

n
, and

for eachρ ∈ R , R(ρ)⊆ U
AR (ρ)

.

We sometimes call interpretations also structures. As one can see in the last line,
relations do not only range over tuples of individuals, but over tuples of chains of
individuals.

Definition 3 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉,
Ĝ = G ∪{chain,echain,nechain,metatop},
v̂= v ∪ {〈echain,chain〉 , 〈nechain,chain〉} ∪

{
〈σ,σ〉

∣∣∣σ ∈ Ĝ\G
}

∪
{
〈σ,metatop〉

∣∣∣σ ∈ Ĝ
}

,

Ŝ = S ∪{echain,nechain}, and
Â = A ∪{†,.}.

Definition 4 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, for eachΣ interpretation
I = 〈U,S,A,R〉,

Ŝ is the total function fromU to Ŝ such that

for eachu∈ U, Ŝ(u) = S(u),
for eachu1 ∈ U, . . . , for eachun ∈ U,

Ŝ(〈u1, . . . ,un〉) =
{

echain if n = 0,
nechain if n > 0

, and

Â is the total function from̂A to the set of partial functions fromU to U such
that

for eachα ∈ A , Â(α) = A(α),
Â(†) is the total function fromU+ to U such that for each
〈u0, . . . ,un〉 ∈ U+,

Â(†)(〈u0, . . . ,un〉) = u0, and
Â(.) is the total function fromU+ to U∗ such that for each
〈u0, . . . ,un〉 ∈ U+,

Â(.)(〈u0, . . . ,un〉) = 〈u1, . . . ,un〉.

† returns the head (left-most element) of a non-empty chain, and. its rest.

Let VAR be a countably infinite set of symbols, the variables.

5

Definition 5 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, T Σ is the smallest set
such that

:∈ T Σ,
for eachv∈ VAR , v∈ T Σ, and
for eachα ∈ Â and eachτ ∈ T Σ, τα ∈ T Σ.

We call each element ofT Σ a Σ term. AΣ term consists of either the reserved symbol
‘ :’ or a variable followed by a (possibly empty) string of symbols of the expanded
attribute set. To determine the interpretation of a term, we need the notion of a variable
assignment.

Definition 6 For each signatureΣ, for eachΣ interpretationI = 〈U,S,A,R〉,

AssI = U
VAR

is theset of variable assignments inI.

We note that the denotation of a variable can be a chain of elements fromU. Σ terms
are interpreted as partial functions fromU to U.

Definition 7 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, for eachΣ interpretation
I = 〈U,S,A,R〉, for eachass∈ AssI, Tass

I is the total function fromT Σ to the set of
partial functions fromU to U such that for eachu∈ U,

Tass
I (:)(u) is defined andTass

I (:)(u) = u,
for eachv∈ VAR , Tass

I (v)(u) is defined andTass
I (v)(u) = ass(v),

for eachτ ∈ T Σ, for eachα ∈ Â ,

Tass
I (τα)(u) is defined

iff Tass
I (τ)(u) is defined and̂A(α)(Tass

I (τ)(u)) is defined, and
if Tass

I (τα)(u) is defined
thenTass

I (τα)(u) = Â(α)(Tass
I (τ)(u)).

We now define the set of descriptions or formulae of RSRL.

Definition 8 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, DΣ is the smallest set
such that

for eachσ ∈ Ĝ , for eachτ ∈ T Σ, τ∼ σ ∈DΣ,
for eachτ1 ∈ T Σ, for eachτ2 ∈ T Σ, τ1 ≈ τ2 ∈DΣ,
for eachρ ∈ R , for eachx1 ∈ VAR , . . . , for eachxAR (ρ) ∈ VAR ,

ρ(x1, . . . ,xAR (ρ)) ∈DΣ,
for eachδ ∈DΣ, ¬δ ∈DΣ,
for eachδ1 ∈DΣ, for eachδ2 ∈DΣ, [δ1∧δ2] ∈DΣ,
for eachδ1 ∈DΣ, for eachδ2 ∈DΣ, [δ1∨δ2] ∈DΣ.
for eachx∈ VAR , for eachδ ∈DΣ, ∃xδ ∈DΣ,
for eachx∈ VAR , for eachδ ∈DΣ, ∀xδ ∈DΣ,

6

As usual, a formula without free variables is called a sentence. In RSRL, the quantifi-
cation domains are so-called components of elements. Given an element in an inter-
pretation, its components are all those elements that can be reached via some feature
path:

Definition 9 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, for eachΣ interpretation
I = 〈U,S,A,R〉, and for eachu∈ U,

Cou
I =

u′ ∈ U

∣∣∣∣∣∣∣∣

for someass∈ AssI,
for someπ ∈ A∗,

Tass
I (:π)(u) is defined, and

u′ = Tass
I (:π)(u)

.

The following definition is a variant of the usual definition of a modified variable
assignment.

Definition 10 For each signatureΣ, for eachΣ interpretationI = 〈U,S,A,R〉, for each
ass∈ AssI, for eachv∈ VAR , for eachw∈ VAR , for eachu∈ U,

assu
v(w) =

{
u if v = w
ass(w) otherwise.

Here is finally the definition of the denotation of a description.

Definition 11 For each signatureΣ = 〈G ,v,S ,A ,F ,R ,AR 〉, for eachΣ interpreta-
tion I = 〈U,S,A,R〉, for eachass∈AssI, Dass

I is the total function fromDΣ to the power
set ofU such that

for eachτ ∈ T Σ, for eachσ ∈ Ĝ ,

Dass
I (τ∼ σ) =

{
u∈ U

∣∣∣∣
Tass
I (τ)(u) is defined, and

Ŝ(Tass
I (τ)(u)) v̂ σ

}
,

for eachτ1 ∈ T Σ, for eachτ2 ∈ T Σ,

Dass
I (τ1 ≈ τ2) =

u∈ U

∣∣∣∣∣∣

Tass
I (τ1)(u) is defined,

Tass
I (τ2)(u) is defined, and

Tass
I (τ1)(u) = Tass

I (τ2)(u)

,

for eachρ ∈ R , for eachx1 ∈ VAR , . . . , for eachxAR (ρ) ∈ VAR ,

Dass
I (ρ(x1, . . . ,xAR (ρ)))

=
{

u∈ U
∣∣〈ass(x1), . . . ,ass(xAR (ρ))

〉 ∈ R(ρ)
}

,

for eachδ ∈DΣ,

Dass
I (¬δ) = U\Dass

I (δ),
for eachδ1 ∈DΣ, for eachδ2 ∈DΣ,

Dass
I ([δ1∧δ2]) = Dass

I (δ1)∩Dass
I (δ2),

for eachδ1 ∈DΣ, for eachδ2 ∈DΣ,

Dass
I ([δ1∨δ2]) = Dass

I (δ1)∪Dass
I (δ2).

for eachv∈ VAR , for eachδ ∈DΣ,

7

Dass
I (∃vδ) =

{
u∈ U

∣∣∣∣∣
for someu′ ∈ Cou

I ,

u∈ D
assu′

v
I (δ)

}
,

for eachv∈ VAR , for eachδ ∈DΣ,

Dass
I (∀vδ) =

{
u∈ U

∣∣∣∣∣
for eachu′ ∈ Cou

I ,

u∈ D
assu′

v
I (δ)

}
.

The termτ1≈ τ2 originally expresses a path equation in a feature structure. In the spe-
cial case where bothτ1 andτ2 are variables, the term expresses equality of variables:
The denotation of a variable is independent of the element of the carrier at which it
is evaluated (Definition7), so for variablesx,y∈ VAR , x≈ y is either true for every
element of the carrier or false. And the definition of denotations above demands the
two variables to denote the same thing. Thus RSRL provides a limited version of an
equality logic.

It is in particular the interpretation of quantification which is special. It contains two
unusual elements: localisation and transitive closure. Localisation because the quan-
tification for a particular element in the universe ranges only over its components, and
transitive closure, because the components form the transitive closure of the one step
transition from one element in the universe to the next via features.

To get to the chainless variant of RSRL some of the above definitions need slight mod-
ifications. In Definition2 of interpretations, relations must be relations on individuals,
only, not on chains. The extended signature and its interpretation in Definitions3
and4 are no longer needed. And in Definition6 variables can only be assigned to
individuals, not chains.

3 Truth in a Finite RSRL-Structure is Undecidable

Since RSRL is a description logic, the notion of truth is only indirectly present. But
already Richter observes that one can say an RSRL-formulaϕ is true in some interpre-
tation I with variable assignmentb if its denotationDb

I (ϕ) = UI is the whole universe.
In other words, a formula is true, if it is true for every object of the universe. In this
case we just write(I,b) |= ϕ. A formula is false, if it is not true.

One of the important differences between RSRL and classical logic is the fact that on
the classical side the truth of a sentence in a given finite model can be decided while
on the RSRL side it cannot in general. In the classical case there exists a result in
descriptive complexity theory (see [2], Chapter 6) by Immerman [3] that shows that
even if we enrich first order logic by deterministic transitive closure, the complexity for
deciding whether or not a sentence is true in a given finite structure is in LOGSPACE
in the size of the structure, so very low. The situation for RSRL is quite different.

Theorem 12 Given a sentenceϕ and a finite RSRL-interpretationI , it is in general
not decidable, ifI modelsϕ.

We prove this theorem by coding Post correspondence problems in finite RSRL-
structures. LetΓ be a finite alphabeth. A Post correspondence system [10] is a finite

8

set P of ordered pairs of nonempty strings; that isP is a finite subset ofΓ+× Γ+.
Here is a simple example: LetΓ = {a,b} andP = {(a,ab),(ba,a)}. A matchof P is
any stringw∈ Γ∗ such that, for somen > 0 and some (not necessarily distinct) pairs
(u1,v1), . . . ,(un,vn) ∈ P it is the case thatw = u1 . . .un = v1 . . .vn. A match for the
example isaba: a ba

ab a where a
ab is the first andba

a the second pair. The Post corre-
spondence problem is the question whether there exists a match for a given systemP.
Post showed that this question is in general undecidable (ifΓ consists of more than 2
letters).

Let P be a Post correspondence system. It will be coded as follows. Each letter ofΓ
is a node in the feature structure, soΓ is the carrier of the RSRL-interpretation. There
exists only one singe sorts, it is appropriate for all letters. The sorts does not serve
any purpose in the coding. It is there only for the technical reason that each node of
an interpretation must have a sort. There is a single featuref . Featuref is appropriate
for sorts and sorts is appropriate for(s, f). Let k be the cardinality ofΓ ande be an
enumeration ofΓ. We define〈e(i),e(i +1)〉 ∈ f for each0< i < k and〈e(k),e(1)〉 ∈ f .
Thus f forms a complete cycle around the letters. The order of the letters in the cycle
is unimportant, the choice of the enumeratione hence free. All that is important is
that for every pair of lettersu,v ∈ Γ there exists a path fromu to v. Consequently,
for eachu ∈ Γ the set of componentsCou = Γ. This simplifies proofs significantly:
Quantification now behaves (almost) classically. To continue the above example, here
is its RSRL-coding:

a8?9>:=;<
s

f
++

b8?9>:=;<
sf

kk

We define three relations, all of them are relations onchainsof letters. The first rela-
tion, Post, contains all pairs ofP, i.e., for allu,v∈ Γ+ : (u,v) ∈ Post iff (u,v) ∈ P. The
second relation,Conc, defines concatenation of chains of letters:

∀xyzConc(x,y,z) ↔ (Ŝ(x)∼ echain∧y≈ z) ∨
(Ŝ(x)∼ nechain∧
∃wr1 r2 : x†≈ w∧z†≈ w∧x.≈ r1

∧z.≈ r2∧Conc(r1,y, r2))

Lemma 13 For all chainsx,y,z∈ Γ∗ : Conc(x,y,z) if and only ifz is the concatenation
of x andy.

Proof. Let x,y,z∈ Γ∗ with Conc(x,y,z). We show thatz is the concatenation ofx
andy by an induction on the length ofx. If x is the empty chain, then the first disjunct
holds and, sincey≈ z we havey = z. Clearlyz is the concatenation ofx andy. If x
is non-empty, then, by the second disjunct, there is a letterw which is the head ofx
and the head ofz and a chainr1 which is the tail ofx and a chainr2 which is the tail
of z such thatConc(r1,y, r2). Since the length ofr1 is smaller than that ofx, it follows
by the induction hypothesis thatr2 is the concatenation ofr1 andy. Thuswr2 is the
concatenation ofwr1 andy.

Let x,y,z∈ Γ∗ with z being the concatenation ofx andy. We show thatConc(x,y,z)
by an induction on the length ofx. If x is the empty chain, theny = z and thus the

9

first disjunct holds and thereforeConc(x,y,z). If x is non-empty, then we can split it
up into the first letterw of x and the restr1 of x. Sincez is the concatenation ofx and
y, we know we can split upzalso andw must be the first letter ofz; we call the restr2.
Clearly, r2 is the concatenation ofr1 andy. By induction hypothesis,Conc(r1,y, r2).
Thus the second disjunct holds, and thereforeConc(x,y,z).

The third relation,Post-Chain, contains all pairs of chains that can be constructed by
pairwise concatenating pairs fromPost.

∀xyPost-Chain(x,y) ↔
Post(x,y) ∨
(∃u1u2v1v2 Ŝ(u1)∼ nechain∧ Ŝ(u2)∼ nechain∧ Ŝ(v1)∼ nechain

∧ Ŝ(v2)∼ nechain∧Conc(u1,u2,x)∧Conc(v1,v2,y)
∧Post-Chain(u1,v1)∧Post(u2,v2))

A pair of chains is inPost-Chain iff it is a pair of the Post correspondence systemPost
or both components can be split up into subchains the first of which is inPost-Chain
and the second a pair of the Post correspondence systemPost.

Lemma 14 For all chainsx,y∈ Γ+ : Post-Chain(x,y) if and only if there is ann > 0
and stringsu1, . . . ,un,v1, . . . ,vn ∈ Γ+ such thatx = u1 . . .un, y = v1 . . .vn and for each
1≤ i ≤ n : (ui ,vi) ∈ P.

Proof. Let there be ann > 0 and stringsu1, . . . ,un,v1, . . . ,vn ∈ Γ+ such that
x= u1 . . .un, y= v1 . . .vn and for each1≤ i ≤ n : (ui ,vi)∈P. We showPost-Chain(x,y)
by an induction onn.
Base casen = 1. In this case(x,y) ∈ P and (x,y) ∈ Post and therefore(x,y) ∈
Post-Chain by the first disjunct of the definition.
Step casen > 1. Let a1 = u1 . . .un−1 andb1 = v1 . . .vn−1. Then(a1,b1) ∈ Post-Chain
by induction hypothesis.a1 andb1 are non-empty chains by definition, andx = a1un

andy = b1vn. Of course(un,vn) ∈ Post. Hence the second disjunct of thePost-Chain
definition holds. And therefore(x,y) ∈ Post-Chain.

Let (x,y) ∈ Post-Chain. Then by definition ofPost-Chain either(x,y) ∈ P or x is the
concatenation of the two non-empty chainsu1 andu2, y is the concatenation of the two
non-empty chainsv1, andv2, (u2,v2) ∈ P and(u1,v1) ∈ Post-Chain, andu1 is shorter
thanx asv1 is shorter thany. The argument can be repeated for the pair(u1,v1) and
so on. The splitting process must terminate since the resulting pair is always smaller.
And each step chops off a pair fromP. Hence(x,y) is indeed the concatenation of pair
from P.

To continue our simple example from above, we use square brackets ([]) for list nota-
tion to show part of the denotation ofPost, Conc, andPost-Chain:
Post = {([a], [ab]),([ba], [a])},
Conc⊃ {([a], [a], [aa]),([a], [b], [ab]),([a], [ab], [aab])}, and
Post-Chain⊃ {([a], [ab]),([ba], [a]),([aba], [aba]),([baa], [aab]),([aa], [abab])}.
Now consider the formula

∃xPost-Chain(x,x).

10

By the above lemma, this formula expresses that there is a match of the Post corre-
spondence system. If truth of the conjunction of this formula together with the defin-
ing formulae ofConc andPost-Chain was decidable in the given RSRL-interpretation,
we had a method for solving Post correspondence problems.

A simple consequence of Theorem12 is that there cannot be a method that takes an
arbitrary RSRL-formula and an RSRL-interpretation and computes the denotation of
the formula in the interpretation.

Corollary 15 Given an RSRL-formulaϕ, a variable assignmentb, and a finite RSRL-
interpretationI , Db

I (ϕ), the denotation ofϕ in I underb, is in general not computable.

Compare these results with the already quoted one by Immerman [3] for classical
first order logic. The key difference of course is the presence of chains as ranges for
variables and argument positions of relations. Although we also need a logic that is
expressive enough to state the definitions ofConc andPost-Chain, it is primarily the
chains that we need to code Post correspondence problems. In some sense, this is a
discussion on the notion offinitenessof an interpretation. An interpretation is finite, if
its carrier, its set of nodes, is finite. But even then, the set of chains of these nodes is
infinite. So, in some sense, we have an infinite domain here. One way of interpreting
this is to say that RSRL can and perhaps should be seen as a two-sorted1 logic. We
have two related domains of denotation: a domain of nodes and a domain of finite
sequences of nodes. When taking this view variables and relations must be regarded
as inherently polymorphic. It seems unlikely that this polymorphism is really needed
in the formalisation of HPSG. If it is indeed not, the above result could be taken as an
argument to restate RSRL as a two-sorted logic, because a two-sorted reformulation
would not only make the logic more perspicuous, it would also make the undecidability
result look quite as one would have expected it.

4 Chainless RSRL is in PTIME

The uncomputability result of the previous section relies on the existence of chains.
It is therefore natural to ask what complexity result can be obtained when leaving out
chains. We can show that if a class of finite structures is definable in chainless RSRL,
then it is decidable by a deterministic Turing machine in a time that is polynomial in
the size of the input structures. In this section, we follow closely the book on finite
model theory by Ebbinghaus and Flum [2], in particular Chapter 6. LetK be a class
of finite RSRL-interpretations. We writeK ∈ RSRL if K is axiomatisable in RSRL.
Axiomatisability in a description logic is to be read as follows. All those structures
are axiomatised for which the defining formula is true, in other words has the whole
carrier as denotation.

Let K be a class of finite interpretations andM a Turing machine.M acceptsK if
M accepts exactly those finite interpretations that lie inK. We defineK is in PTIME

1sorted, of course, in the logical sense, not the HPSG sense.

11

(“deterministic polynomial time”) iff there exists a deterministic Turing machineM
and a polynomialp∈ IN[x] such thatM acceptsK andM is p time-bounded.

We will now take RSRL-interpretations as inputs to Turing machines. We consider
only finite interpretations, infinite ones cannot be input to a machine. LetI be a finite
interpretation with|I | = n. By passing to an isomorphic copy we can and always
will assume that the carrierUI = {0,1, . . . ,n− 1}, an initial sequence of the natural
numbers.

The machine has input tapes and work tapes, all infinitely extending to the right. The
input tapes are the universe tape, the sort tape, a feature tape for each feature and a
relation tape for each relation. The universe tape contains justn consecutive 1’s, so it
looks like this

α 1 1 . . . 1 0 0 . . .

−1 0 1 n−1 n n+1

The sort tape contains the sort for each element. The inscription of celli is σ iff
S(i) = σ and the rest of the tape is filled with zeros.

Features and relations are both coded in the same way, features being special types of
binary relations. To code relationR, let R be r-ary, that is,R⊆ {0, . . . ,n−1}r . For
j < nr , let | j|r be the j-th r-tuple in the lexicographic ordering of{0, . . . ,n−1}r ; in
other words, look at the uniquen-adic representation of j,

j = j1 ·nr−1 + j2 ·nr−2 + . . .+ jr−1 ·n+ jr with 0≤ j i < n,

and set| j|r = (j1, . . . , jr). Then the tape codingRhas the inscription

α a0 a1 a2 a3 . . . anr−1 0

−1 0 1 2 3 nr −1 nr

wherea j = 1 iff R| j|r anda j = 0 iff not R| j|r .
Formulae may contain free variables. The values of these variables are determined
by assignment functions. So, in order to compute on structures we would need to
code assignment functions, too. Instead, we look at a variant of RSRL which allows
for individual constants. This obviously does not extend the expressive power of the
language, since every constant can be replaced by a free variable. We will do just the
opposite and replace every free variable by anewconstant in an extended signature
and fix the denotation of the constant to be exactly the element that is the denotation of
the variable it replaces. This way, we need not code assignment functions. For every
constant, there is an input tape. Since the denotation of a constant is a number< n, the
constant is coded by the binary representation of that number.

The machine also possesses several work tapes. We define the first work tape to be
the output tape. That is to say, if the machine halts, the first work tape contains the
information which elements are in the denotation of the formulaϕ. So, thei-the cell

12

of the tape contains a 1 iffi ∈ D(ϕ) and a 0 otherwise. All other cells are padded with
0’s.

We want to show that for any sentence of RSRL the classK of its finite models is in
PTIME. We even show that there is a machineM strongly witnessingK ∈ PTIME, that
is,

• M acceptsK;

• for any interpretationI every run ofM, started withI stops; in particular,M
decidesK;

• for any interpretationI every run ofM satisfies the polynomial time bound.

Theorem 16 LetK be a class of finite interpretations of chainless RSRL. IfK ∈ RSRL
thenK ∈ PTIME.

Proof. The proof proceeds by induction on the axiomatising formulaϕ.
Let ϕ be atomic. It can have three different forms:R(c1, . . . ,cr) for somer-ary relation
R; or τ1 ≈ τ2 with termsτ1,τ2; or τ ∼ σ with termτ and sortσ. In the first case, we
compute the numberl represented by(c1, . . . ,cr) in n-ary notation and then look up
the l -the cell of the input tape forR. If it contains a 1, a 1 is written onto the firstn
cells of the first work tape. If it contains a 0, a 0 is written onto the firstn cells of the
first work tape. Sincel is a polynome overn the result can be computed in polynomial
time.

In the second case we have to compute the denotation of the termsτ1,τ2 for each
element0 ≤ i < n. Remember that by Definition5 a term consists of the special
symbol : or a constant followed by a possibly empty string of features. For each of
the two terms we use a work tape containing the denotation of the term application
onto i computed so far in binary notation. For the first termτ1, the initial inscription
of its work tape isi, iff τ1 starts with: as leftmost symbol, or the value of the constant
cv as given from the input tape for that constant, iffcv is the leftmost symbol. After
initialisation, for each featuref we look up the result of applyingf to the elementj
on the work tape. Even thoughf is represented as a relation, we find that value by
checking if(j,k) ∈ f for each0≤ k < n. Since f is functional, for at most onek there
is (j,k) ∈ f . If there is one,k is written onto the work tape and we proceed with the
next feature ofτ1. If there is none, this means the termτ1 is undefined oni. Thus we
write a0 onto thei’s cell of the output tape and proceed withi + 1. Analogously we
calculate the application ofτ2 onto i. Finally we compare the values of the two work
tapes. If they are the same number, we write a1 onto thei’s cell of the output tape. If
the numbers are different, we inscribe a0. Then we proceed withi +1.
Initialising a work tape is logarithmic inn. Application of a feature function is cubic
in n. Hence the denotation of the formula can be computed in polynomial time.

The third case is somewhat similar to the second. For each0≤ i < n, we calculate the
denotation of termτ exactly as described in the case. Ifτ is undefined oni, we just
note a 0 on thei’s cell of the output tape. Otherwise letmbe the result of applyingτ to
i. We check now them’s cell of the sort tape to see if it agrees withσ. If so, we write
a 1 on thei’s cell of the output tape, if not, we write a 0. Then we proceed withi +1.

13

Initialising a work tape is logarithmic inn. Application of a feature function is cubic in
n. Checking a sort is linear inn. Hence the denotation of the formula can be computed
in polynomial time.

Let ϕ be non-atomic. Ifϕ = ¬ψ, then there is by induction hypothesis a machine that
computesψ in polynomial time. We take this machine and add a step at the end. In
this step, the output on the first work tape is reversed by replacing on the firstn cells
every 1 by a 0 and vice versa. This step is clearly linear inn. Thus the machine forϕ
is in PTIME.

Let ϕ = ψ∨χ. By induction hypothesis there are PTIME-bounded machinesMψ and
Mχ for ψ andχ. A machineMϕ for ϕ is constructed by runningMψ and copying the
result to a work tape, runningMχ and copying the result onto another work tape and
finally reading the results on the work tapes cell by cell and writing a 1 on the first
work tape whenever there is a 1 on one of the two work tapes and a 0 otherwise, a step,
which is apparently linear inn. ThusMϕ is in PTIME.

Let ϕ = ψ∧χ. By induction hypothesis there are PTIME-bounded machinesMψ and
Mχ for ψ andχ. A machineMϕ for ϕ is constructed by runningMψ and copying the
result to a work tape, runningMχ and copying the result onto another work tape and
finally reading the results on the work tapes cell by cell and writing a 1 on the first
work tape whenever there is a 1 on both of the two work tapes and a 0 otherwise, a
step, which is apparently linear inn. ThusMϕ is in PTIME.

Let ϕ = ∃xψ. Remember that by Definition11 D(∃xψ) = {0≤ i < n | ∃ j < n : j ∈
Coi andi ∈D(ψ j/x)}.2 A machineMϕ for ϕ works in two steps. In a first step, it com-
putes the components for every element of the carrier, a binary relation Components
Co⊆ {0,1, . . . ,n−1}2 with (i, j) ∈Co iff j ∈ Coi . We give here a polynomial algo-
rithm that can easily be used to define a Turing machine. The relationCo is initialised
by setting(i, i) ∈Co for all 0≤ i < n. We need one additional boolean variablenew.

Repeat
Set new := false
For i := 0 to n-1

For j := 0 to n-1
If Co(i,j) then

For k := 0 to n-1
For all features F

If F(j,k) and not Co(i,k) then
Set Co(i,k) := true
Set new := true

Until not new

SinceCo⊆ {0,1, . . . ,n−1}2 andCo grows monotone in each run of the repeat loop,
the repeat loop terminates after at mostn2 steps. Therefore the complexity of the
algorithm isO(n5). The incarnation as a machine is even worse, because looking up
and writing to a cell of the representation of a binary relation – as areCo and the

2As mentioned afore,ψ j/x is gained fromψ by replacing every occurrence of the variablex by the
new constantcx and fixing the denotation of the constantcx to j.

14

features – is quadratic inn. Hence the complexity for the machine isO(n7), bad but
still polynomial, as desired.

It is of course clear that the Components relation needs to be computed only once,
even if the formula contains several quantifiers.

The second step consists in calculating the denotationD of ∃xψ. By induction hypoth-
esis there is for every0≤ j < n a PTIME-machineMψ j/x for ψ where the variablex is
replaced by the constantj. Again we provide a pseudo-code algorithm.D is initialised
by setting everything to false, analog to erasing the first work tape.

For i := 0 to n-1
Set j := 0
Set found := false
While (j < n and not found)

If Co(i,j) then
Run Mψ j/x

If i ∈ Output(Mψ j/x) then
Set D(i) := true
Set found := true

Set j := j+1

The algorithm has the complexityO(n2) multiplied by the complexity ofMψ. Since
Mψ is in PTIME by induction hypothesis, it follows thatMϕ is in PTIME, too.

Let ϕ = ∀xψ. This case is analog to the existential quantification case.

As a simple consequence of this proof we obtain the following corollary.

Corollary 17 Calculating the denotation of a chainless RSRL-formula in a finite
RSRL-interpretation is PTIME-hard in the size of the interpretation.

The denotation of an RSRL-formula is the set of those elements of the universe for
which the formula holds true. Even if the formula is a sentence and it turns out that it
is true for all elements, it can well be the case that subformulae have denotations that
differ from the whole universe and the empty set. Therefore it is necessary to store
intermediate results of subformulae. And this cannot be done with only logarithmic
space available. It is therefore very likely that PTIME is the least upper bound. Thus it
is basically the fact that RSRL is a description logic that leads to the complexity being
a little worse compared to the result for classical logic.

The current section provides an answer to one of the two basic questions of descrip-
tive complexity theory, namely the question about the complexity of the satisfaction
relation. A natural question is to ask about the converse: LetK be a class of finite
interpretations of chainless RSRL. IfK ∈ PTIME, is K then definable by an RSRL-
sentence? Standard techniques for classical logic answer this type of questions for
orderedstructures by simulating the computations of a Turing machine in a suitable
logic. Trying to do the same for (chainless) RSRL is surprisingly difficult. At the

15

moment it is even unclear, whether order can be axiomatised in RSRL. That is to say,
suppose our signature contains a relation symbol< — as is standardly assumed when
simulating computations by a logic — it is simple to write down a few first order logic
axioms that express that< is indeed a linear order. Whether this can be done in RSRL,
is an open question. The classical first order axioms can clearly not be used, and neither
any simple variant of it. On the other hand, order is crucial in simulating computation
steps — which are inherently ordered — in a logic. There are almost no results in de-
scriptive complexity theory if the logic does not facilitate the axiomatisation of order.
From such a perspective, it seems unlikely that Turing machine computations can be
captured by RSRL. Hence there is no promising way to find a logical definition for a
class of finite RSRL-structures that is defined by acceptability by a Turing machine of
a certain type.

5 Conclusion

We presented in this paper a computability and a complexity result on RSRL. In a
first part, we showed that truth of an RSRL-sentence in a finite RSRL-structure is in
general undecidable by coding Post correspondence problems in RSRL. It follows that
the denotation of a formula in a finite RSRL-structure is in general uncomputable.
These results rely on the fact that relations range over and variables denote not only
elements of the carrier but also finite lists of elements. This suggests a view of RSRL
as a many-sorted logic with inherent polymorphism of relations and variables. The
natural question to the linguists using RSRL is therefore whether this polymorphism is
used at all or wether it is just an artefact of the way the semantics of RSRL is currently
defined. In a many-sorted reformulation it becomes immediately visible that one of
the denotation domains, namely the domain of finite lists, is infinite even if there are
only finitely many different elements in the lists. The uncomputability result is quite
normal under such a perspective, because it shows RSRL as a powerful language over
lists, in which Post correspondence problems can easily be coded.

In a second part, we provided a complexity result for chainless RSRL. This is a weaker
version of RSRL in which relations range over and variables denote only elements of
the carrier, not lists. IfK is a class of finite structures defined by a sentence of chainless
RSRL thenK is in PTIME, i.e., K is accepted by a deterministic Turing machine
polynomially time bounded by the size of the structures. It follows that calculating
the denotation of a chainless RSRL-formula in a finite structure is PTIME-hard in the
size of the structure. These complexity results are not too far away from the ones
for classical first order logic: Classes of first order structures definable by first order
logic are in LOGSPACE. That chainless RSRL comes out with a higher complexity is
attributed to the fact that (chainless) RSRL is a description logic. The denotation of a
formula is not just true or false but rather the set of objects (elements of the carrier)
for which the formula is true. When calculating the denotation of a complex formula
it is necessary to handle intermediate results of subformulae which can in general not
be stored on logarithmic space only.

16

Acknowledgements

I would like to thank Frank Morawietz, Uwe M̈onnich, Frank Richter, and Manfred
Sailer for helpful suggestions and interesting discussions.

References

[1] Alonso Church. A Note on the Entscheidungsproblem.Journal of Symbolic
Logic, 1(40–41), 1936. Correction ibid. P. 101–102.

[2] Heinz-Dieter Ebbinghaus and Jörg Flum.Finite Model Theory. Springer-Verlag,
1995.

[3] Neil Immerman. Expressibility as a Complexity Measure: Results and Direc-
tions. In Second Structure in Complexity Theory Conference, pages 194–202.
Computer Soc. of the IEEE, 1987.

[4] Stephan Kepser. A Satisfiability Algorithm for a Typed Feature Logic. Mas-
ter’s thesis, Seminar für Sprachwissenschaft, Universität Tübingen, Arbeitspa-
piere des SFB 340, Bericht Nr. 60, 1994.

[5] Paul John King.A Logical Formalism for Head-Driven Phrase Struture Gram-
mar. PhD thesis, University of Manchester, 1989.

[6] Paul John King. Towards Truth in HPSG. In Valia Kordoni, editor,Tübingen
Studies in Head-Driven Phrase Structure Grammar, Vol 2, pages 301–352. Ar-
beitspapiere des SFB 340, Bericht Nr. 132, 1999.

[7] Paul John King, Kiril Ivanov Simov, and Bjørn Aldag. The Complexity of
Modellability in Finite and Computable Signatures of a Constraint Logic for
Head-Driven Phrase Structure Grammar.Journal of Logic, Language and In-
formation, 8(1):83–110, 1999.

[8] Carl Pollard and Ivan A. Sag.Information Based Syntax and Semantics, Vol. 1:
Fundamentals. Number 13 in Lecture Notes. CSLI, 1987.

[9] Carl Pollard and Ivan A. Sag.Head-Driven Phrase Structure Grammar. Univer-
sity of Chicago Press, 1994.

[10] Emil Post. A Variant of a Recursively Unsolvable Problem.Bulletin of the AMS,
52:264–268, 1946.

[11] Frank Richter.A Mathematical Formalism for Linguistic Theories with an Appli-
cation in Head-Driven Phrase Structure Grammar. PhD thesis, SfS, Universität
Tübingen, 2000.

[12] Frank Richter, Manfred Sailer, and Gerald Penn. A Formal Interpretation of
Relations and Quantification in HPSG. In Gosse Bouma, Erhard Hinrichs, Geert-
Jan M. Kruijff, and Richard T. Oehrle, editors,Constraints and Resources in
Natural Language Syntax and Semantics, pages 281–298. CSLI Publications,
1999.

17

