
5

Bidirectional Optimality for

Regular Tree Languages

Stephan Kepser

5.1 Introduction

Optimality theory (OT henceforth) has been introduced by Prince and
Smolensky (1993) originally as a model for generative phonology. In
recent years, this approach has been applied successfully to a range of
syntactic phenomena, and it is currently gaining popularity in seman-
tics and pragmatics as well. It is based on the idea that a mapping from
one level of linguistic representation to another should be described in
terms of rules and filters. The novel contribution of OT is that filters
– or, synonymously, constraints – are ranked and violable. Thus the
result of a rule-based generation process may still be acceptable al-
though it violates certain constraints as long as other results violate
more constraints or constraints that are higher ranked.

In other words, the rules generate a set of candidates that are com-
petitors. On this set, the constraints are applied in the order of their
ranking starting with the highest ranked constraint. A candidate may
violate a constraint more than once. The application of the highest
ranked constraint assigns each candidate the number of violations of
that constraint. Some of the candidates are now optimal with respect to
this constraint in the sense that they violate the constraint the fewest
times. These, and only these, are retained for the next round of con-
straint application. In each round, the current constraint is applied
to the set of candidates remaining from the previous rounds. And only
those candidates that are optimal with respect to the current constraint

63

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Wintner (Eds.).
Copyright c© 2004, Stephan Kepser.

64 / Stephan Kepser

make it into the next round. In the end, after applying all constraints, a
set of candidates is reached which is optimal with respect to the given
ranking of the constraints. The method is therefore comparable to a
high jump competition in athletics.

Frank and Satta (1998) show that certain classes of OT-systems can
be handled by finite state techniques. Their approach is influenced by
ideas from computational phonology, the original field of application for
OT. In this view, the generation of candidates is a relation on strings,
and this relation is defined by a finite state transducer. In order to also
render constraints by finite state automata, two restrictions have to be
made. The first one is that constraints have to be binary, that is to
say, each constraint assigns each candidate either 0 or 1. The second
restriction demands constraints to be output constraints. An output
constraint is a constraint that assigns a number to a candidate pair
purely on the base of its output. Under these restrictions, constraints
can be rendered as regular string languages over the output. The aim of
the paper by Frank and Satta (1998) is to provide a modularity result
for the complexity of an OT-system in the following sense. Suppose
that the set of candidates is given by a finite state transducer and
all constraints are expressable by regular languages. Then the whole
OT-system can be rendered by finite state techniques and is no more
complex than its components. The success of the approach by Frank
and Satta is based on well-known closure properties of regular string
languages.

The work by Frank and Satta was extended into two diverging di-
rections. Based on the observation that natural language syntax and
semantics have trees as their underlying data structures and not strings
Wartena (2000) and Kepser and Mönnich (2003) propose ways to ex-
tend the approach by Frank and Satta to tree languages. Wartena
(2000) shows that the original results for strings can be extended
straight forwardly to trees, since the closure properties for regular
string languages needed by Frank and Satta also hold for regular tree
languages. Observing that there are certain non-regular phenomena in
some natural languages (see, e.g., (Shieber, 1985)) Kepser and Mönnich
(2003) extend the result by Wartena to linear context-free tree lan-
guages. In their work, the generator is split into a source for input
trees defined by means of a linear context-free tree grammar and a
relation between input trees and output trees defined by a linear tree
transducer. Constraints are defined by monadic second-order formu-
lae or, equivalently, regular tree languages. Their modularity result is
based on closure properties of linear context-free tree languages also
shown in that paper.

Bidirectional Optimality for Regular Tree Languages / 65

The second direction concerns the notion of optimality. All of the
above described approaches are unidirectional in the sense that they
describe ways to find optimal output for a given input. This view is ap-
parently generation driven. Blutner (2000) points out that in particular
in semantics and pragmatics unidirectional optimality may not suffice.
The optimal interpretation of an utterance is obtained by an interplay
between the generation process on the speaker side and the parsing
process on the hearer side. Blutner therefore introduces the notion of
bidirectional optimality theory. Formal properties of bidirectional OT
are studied by Jäger (2002, 2003). He shows that the modularity re-
sult of Frank and Satta extends to bidirectional OT-systems of regular
string languages. Jäger (2003) also shows that for bidirectional OT-
systems the restriction to binary constraints is essential to achieve the
modularity result.

Jäger states that the construction for bidirectional optimality of
string languages in the earlier paper extends to bidirectional optimal-
ity of regular tree languages, if some automaton or tree transducer
representing the Cartesian product of two regular tree languages can
be provided. Actually, the proofs Jäger presents are that general in na-
ture that they need not change for the case of regular tree languages.
The present paper closes this gap. Cartesian products of regular tree
languages can be defined by means of so-called tree tuple automata
(Comon et al., 1997). And tree tuple automata can be integrated into
the finite state construction used to compute bidirectionally optimal
pairs. Thus the modularity result by Jäger (2002) for bidirectional op-
timality extends to the case of regular tree languages.

For obvious reasons the present paper follows Jäger (2002) very
tightly quoting it frequently.

5.2 Preliminaries

Regular Tree Grammars

A ranked alphabet (or ranked operator domain) Σ is an indexed family
〈Σn〉n∈NI of disjoint sets. A symbol f in Σn is called an operator of rank

n. If n = 0, then f is also called a constant. For a ranked alphabet Σ,
the set of trees over Σ (or Σ-trees or terms over Σ), denoted TΣ is the
smallest set of strings over Σ∪{(,)} such that Σ0 ⊆ TΣ and, for n ≥ 1,
if f ∈ Σn and t1, . . . , tn ∈ TΣ, then f(t1, . . . , tn) ∈ TΣ. A subset of TΣ

is called a tree language over Σ.
Any set M can be interpreted as a signature in which all of the ele-

ments of M are constants. Thus TΣ∪M denotes the set of trees over Σ
and M . Let X = {x1, x2, x3, . . .} be an infinite set (of variables). Then

66 / Stephan Kepser

TΣ(x1, . . . , xn) = TΣ∪{x1,...,xn} denotes the set of trees over Σ and ad-
ditional variables {x1, . . . , xn}. From the point of view of a signature, a
“variable” is a constant. If t ∈ TΣ(X) then we also write t(x1, . . . , xn)
to indicate that the variables of t are a subset of the set {x1, . . . , xn}.
Let Σ and Ω be two signatures, let t(x1, . . . , xn) ∈ TΣ(x1, . . . , xn), and
let t1, . . . , tn ∈ TΩ. Then t(t1, . . . , tn) ∈ TΣ∪Ω is the result of simul-
taneously replacing each occurrence of xj in t(x1, . . . , xn) by tj (with
1 ≤ j ≤ n).

Now we define the notion of a regular tree grammar.

Definition 1 A regular tree grammar is a quadruple G = (Σ,F , S, P)
where

Σ is a finite ranked alphabet of terminals,
F is a finite set of nonterminals or function symbols,

disjoint with Σ,
S ∈ F is the start symbol, and
P is a finite set of productions (or rules) of the form

F → t, where F ∈ F and t ∈ TΣ∪F .

For a regular tree grammar G = (Σ,F , S, P) the derivation relation
is given as follows. Let s1, s2 ∈ TΣ∪F . We say s1 ⇒ s2 if and only if
there is a production F → t and F is a leaf node of s1. Tree s2 is
obtained from s1 by replacing F with the tree t. As usual,

∗
⇒ stands

for the reflexive-transitive closure of ⇒. For a regular tree grammar G,
we define L(G) = {t ∈ TΣ | S

∗
⇒ t}. L(G) is called the tree language

generated by G.

Tree Automata and Tree Transducers

For regular tree languages there exists an automaton model that corre-
sponds to finite state automata for regular string languages. Let Σ be
a signature. A frontier-to-root tree automaton is a triple A = (Q, F, δ)
where Q is a finite set of states, F ⊆ Q a set of final states and δ is a
finite transition relation. Each transition has the form

f(q1, . . . qn) → q

where f ∈ Σn, q, q1, . . . , qn ∈ Q. On an intuitive level, a frontier-to-root
tree automaton labels the nodes in a tree with states starting from the
leaves and going to the root. Suppose n is a node in the tree and f is the
k-ary function symbol at node n and the k daughters of n are already
labelled with states q1, . . . , qk, and furthermore f(q1, . . . , qk) → q is a
transition of A, then node n can be labelled with state q. A tree is
accepted if the root can be labelled with a final state.

We will now report some results about the theory of regular tree lan-
guages. For more information, consult the work by Gécseg and Steinby

Bidirectional Optimality for Regular Tree Languages / 67

(1984, 1997). A tree language L is regular if and only if there is a tree au-
tomaton that accepts L. Regular tree languages are closed under union,
intersection, and complement. There are corresponding constructions
for tree automata. And finally, for every tree automaton accepting lan-
guage L there exists a tree automaton also accepting L which has a
single final state.

Tree automata can be generalised to automata that transform one
tree into another, so-called tree transducers. The following exposition
on tree transduction is taken from (Gécseg and Steinby, 1997). Let Σ
and Ω be two signatures. A binary relation τ ⊆ TΣ × TΩ is called a
tree transformation. A pair (s, t) ∈ τ is interpreted to mean that τ may
transform s into t. We can speak of compositions, inverses, domains,
and ranges of tree transformations as those of binary relations. We will
now define frontier-to-root tree transducers.

Definition 2 A frontier-to-root tree transducer (or F-transducer) con-
sists of a quintuple A = (Σ, Ω, Q, P, F) where Σ and Ω are signatures;
Q is a finite set of states, each element of Q is a unary function; F ⊆ Q

is the set of final states ; and P is a finite set of productions of the
following type:

f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm))

where f ∈ Σm, q1, . . . , qm, q ∈ Q, t(x1, . . . , xm) ∈ TΩ(x1, . . . , xm).

The transformation induced by an F-transducer is defined as follow.
We write QTΩ for the set {q(t) | q ∈ Q, t ∈ TΩ} and regard QTΩ as a
set of constants. Let s, t ∈ TΣ∪QTΩ

be two trees. It is said that t can be
obtained by a direct derivation from s in A iff t can be obtained from
s by replacing an occurrence of a subtree f(q1(t1), . . . , qm(tm)) (with
f ∈ Σm, q1, . . . , qm ∈ Q, t1, . . . , tm ∈ TΩ) in s by q(t(t1, . . . , tm)), where
f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm)) is a production from P . If s

directly derives t in A then we write s ⇒A t. The reflexive transitive
closure s ⇒∗

A t is the derivation relation.
Intuitively, an F-transducer traverses a tree s from the leaves to

the root rewriting it at the same time. In a single derivation step we
consider a node n in s with label f where all the daughter nodes are
already transformed into trees of TΩ and each daughter node is in some
state qi. Then we replace the subtree of node n with the tree t from
the production where the place holder variables of t are replaced by the
trees of the daughter nodes of n. The root of this subtree is put into
state q.

The relation

τA = {(s, t) | s ∈ TΣ, t ∈ TΩ, s ⇒∗
A q(t) for some q ∈ F}

68 / Stephan Kepser

is the transformation relation induced by A. A relation τ ⊆ TΣ × TΩ

is an F-transformation if there exists an F-transducer A such that
τ = τA. For a tree language L ⊆ TΣ we define A(L) = {t ∈ TΩ |
∃s ∈ L with (s, t) ∈ τA}.

A production f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm)) is called lin-

ear if each variable x1, . . . , xm occurs at most once in t. An F-transducer
is linear if each production is linear. We denote a linear F-transducer
by LF-transducer. We will make use of the following results about LF-
transducers.

Proposition 1 LF-transducers are closed under composition.

The classes of regular tree language is closed under LF-transductions.

The domain and range of an LF-transducer is a regular tree language.

For every regular tree language L there is an LF-transducer ι such that

Dom(ι) = Rng(ι) = L and ι is the identity on L.

These results can be found, e.g., in (Gécseg and Steinby, 1984, 1997).
If A1 and A2 are two LF-transducers, we write A1 ◦ A2 for the com-
position of first A1 and then A2. Let L1 and L2 be two tree languages.
A binary relation R ⊆ L1 × L2 is called rational if there exists an
LF-transducer A such that τA = R.

LF-transducers define relations between tree languages where there
is a strong connection between the input trees and the output trees.
Obviously, an output tree is constructed on the base of a structural
decomposition of the input tree. As stated in the introduction, we also
need an automaton or a transducer representation of the Cartesian
product of arbitrary regular tree languages. In a Cartesian product, ev-
ery element of the input tree language is related to every element of the
output tree language. Hence there is in general no structural relation
between an input tree and an output tree. Therefore LF-transducers
are not capable of defining the Cartesian product of two regular tree
languages, as already observed by Jäger (2002).

But the Cartesian product of two (or more) regular tree languages
can be defined by means of tree tuple automata. Comon et al. (1997,
Sect. 3.2) describe three classes of tree tuple automata two of which can
be used for the definition of a Cartesian product. The simplest class,
which suffices already for our purposes, is based on pairs of automata.
Let L1 and L2 be two regular tree languages, and let A1 be a bottom-
up tree automaton accepting L1, and A2 a bottom-up tree automaton
accepting L2. Define for any two trees s, t that (s, t) ∈ (A1,A2) iff
s ∈ A1 and t ∈ A2. Then, obviously, (A1,A2) defines the relation
L1 × L2. This relation is called Rec× in (Comon et al., 1997).

A more powerful definition of tree tuple automata is given, if the re-

Bidirectional Optimality for Regular Tree Languages / 69

f

��
��

��
��

;;
;;

;;
;;

m

��
��

��
��

(f ,m)

ww
ww

ww
ww

w

HH
HH

HH
HH

H

a g h d n

<<
<<

<<
<<

+3 (a,d) (g,n)

ww
ww

ww
ww

w
(h,⊥)

b a a c (b,a) (⊥,c) (a,⊥)

FIGURE 1 Coding two trees in a single one.

lation is expressed by a single automaton instead of a pair of automata.
To make this approach work, two trees have to be coded in a single one.
Let Σ and Ω be two signatures. We define trees with labels as pairs of
(Σ∪{⊥}×Ω∪{⊥}) where ⊥ is a new (padding) symbol not contained
in Σ or Ω. For a pair of trees (s, t) ∈ (TΣ × TΩ) we define inductively
their coding [s, t] by

[f(t1, . . . , tn), g(u1, . . . , um)] =
{

(f, g)([t1, u1], . . . , [tm, um], [tm+1,⊥], . . . , [tn,⊥]) if n ≥ m

(f, g)([t1, u1], . . . , [tn, un], [⊥, un+1], . . . , [⊥, um]) if m ≥ n

Basically, the union of the tree domains is constructed and the nodes
are labelled with pairs of labels. If one tree lacks a branch, then the
padding symbol ⊥ is used. See Figure 1 for an example.

Now, Rec is the set of relations R ⊆ TΣ × TΩ such that {[s, t] |
(s, t) ∈ R} is accepted by a bottom-up tree automaton on the signature
(Σ ∪ {⊥} × Ω ∪ {⊥}).

We quote some results on tree tuple automata (see Comon et al.,
1997). Rec× is strictly included in Rec. Rec× and Rec are closed under
union, intersection and complement.

There exists an extended definition of tree transducers by Comon
et al. (1997), who introduce ǫ-rules. Extended tree transducers are
strictly more powerful than standard tree transducers as defined above
in the sense that every relation definable by a standard tree transducer
is definable by an extended tree transducer. But there are relations
definable by an extended tree transducer that cannot be defined by a
standard tree transducer. These extended tree transducers, however,
are not capable of defining arbitrary Cartesian products of regular tree
languages. Therefore they cannot be used to substitute the above de-
fined tree tuple automata.

Monadic Second-Order Logic

Monadic second-order logic (MSO) is an extension of first-order logic
by set variables and quantification over set variables. MSO is quite

70 / Stephan Kepser

a powerful logic. Many graph theoretical properties can be expressed
in MSO, for example that a graph is a proper tree. Courcelle (1990)
showed that if a relation is definable in MSO, then so is its transitive
closure. For tree languages, it is known that a tree language is regular
iff it is definable by an MSO formula (see, e.g., Gécseg and Steinby,
1984). Thus an MSO formula can be translated into a tree automaton
accepting the same tree language.

5.3 Optimality Theory

We now turn to optimality theory. Let us start by making the notions
of optimality theory more precise. In the general case, an OT-system
consists of a binary relation GEN and a finite set of constraints that
are linearly ordered. Constraints may be violated several times. So a
constraint should be construed as a function from GEN into the nat-
ural numbers. Thus an OT-system assigns each candidate pair from
GEN a sequence of natural numbers. The ordering of the elements of
GEN that is induced by the OT-system is the lexicographic ordering
of these sequences.

Definition 3 An OT-system is a pair (GEN, C) where GEN is a bi-
nary relation and C = 〈c1, . . . , cp〉, p ∈ NI, is a linearly ordered sequence
of functions from GEN to NI. Let a, b ∈ GEN. We say a is more eco-
nomical than b (a < b), if there is a k ≤ p such that ck(a) < ck(b) and
for all j < k : cj(a) = cj(b).

Intuitively, an output o is optimal for some input i iff GEN relates o

to i and o is optimal amongst the possible outputs for i. This is the no-
tion of unidirectional optimality, which is obviously generation-driven.
Bidirectional optimality reflects the fact that in semantics and prag-
matics the relation between input (a form) and output (a meaning)
can and perhaps should be regarded as an interplay between parsing
optimality and generation optimality. Hence Jäger (2002), formalising
ideas by Blutner (1998, 2000), defines bidirectional optimality as fol-
lows.

Definition 4 A form-meaning pair (f, m) is bidirectionally optimal iff

1. (f, m) ∈ GEN,
2. there is no bidirectionally optimal (f ′, m) such that (f ′, m) <

(f, m),
3. there is no bidirectionally optimal (f, m′) such that (f, m′) <

(f, m).

Thus, checking whether a form-meaning pair is bidirectionally optimal
requires simultaneous evaluation of form alternatives and meaning al-

Bidirectional Optimality for Regular Tree Languages / 71

ternatives of this pair. This definition is not circular in cases where the
ordering of pairs is well-founded. As was shown by Jäger (2002), the
ordering of pairs given by the definition of an OT-system is indeed well-
founded. Hence bidirectional optimality of OT-systems is not a circular
notion.

The type of constraints considered in the literature on finite state
OT and also used here is not quite as general as Definition 3 insinu-
ates. Firstly, constraints have to be binary, i.e., a constraint assigns a
candidate pair either the number 0 or 1. This restriction is not quite
as severe as it may seem. Every constraint with an upper bound on
the number of violations can be translated into a sequence of binary
constraints.

Secondly, so-called markedness constraints are considered only. A
markedness constraint is a constraint that either evaluates solely the
input or solely the output.

Definition 5 Let (GEN, (c1, . . . , cp)) be an OT-system.
A constraint cj is an output markedness constraint iff cj(i, o) = cj(i

′, o)
for all (i, o), (i′, o) ∈ GEN.
A constraint cj is an input markedness constraint iff cj(i, o) = cj(i, o

′)
for all (i, o), (i, o′) ∈ GEN.

To gain a better understanding of how bidirectional optimality is
evaluated on markedness constraints in a (finite) OT-system consider
this example by Jäger (2002). The following text is a direct quote from
(Jäger, 2002, p. 441f).
“Suppose GEN = {1, 2, 3} × {1, 2, 3}, and we have two constraints
which both say ‘Be small!’ One of its instances applies to the input and
one to the output. Thus formally we have

. O = (GEN, C).

. GEN = {1, 2, 3} × {1, 2, 3}.

. C = 〈c1, c2〉.

. c1(〈i, o〉) = i.

. c2(〈i, o〉) = o.

It follows from the way constraints are evaluated that 〈i1, o1〉 <O

〈i2, o2〉 iff i1 ≤ i2, o1 ≤ o2, and 〈i1, o1〉 6= 〈i2, o2〉. Now obviously 〈1, 1〉 is
bidirectionally optimal since both its input and its output obey the con-
straints in an optimal way. Accordingly, 〈1, 2〉, 〈2, 1〉, 〈1, 3〉, and 〈3, 1〉
are blocked, since they all share a component with a bidirectionally
optimal candidate. There are still candidates left which are neither
marked as optimal nor as blocked, so we have to repeat this procedure.
Amongst the remaining candidates, 〈2, 2〉 is certainly bidirectionally

72 / Stephan Kepser

optimal because all of its competitors in either dimension are known
to be blocked. This candidate in turn blocks 〈2, 3〉, 〈3, 2〉. The only re-
maining candidate, 〈3, 3〉, is again bidirectionally optimal since all its
competitors are blocked.1 This example illustrates the general strategy
for the finite case: Find the cheapest input-output pairs in the whole
of GEN and mark them as bidirectionally optimal. Next mark all can-
didates that share either the input or the output component (but not
both) with one of these bidirectionally optimal candidates as blocked. If
there are any candidates left that are neither marked as bidirectionally
optimal nor as blocked, repeat the procedure until GEN is exhausted.”
And this ended the quote.

The construction of an OT-system for tree languages looks in prin-
ciple as follows. The generation relation GEN is expressed by an LF-
transducer, i.e., it is a rational relation. The constraints are expressed
by MSO-sentences either on the input or on the output. As stated be-
fore, an MSO-sentence can be translated into a regular tree language
and an LF-transducer. It is important to note that a constraint in OT
is violable, and this is also true for binary constraints. If some can-
didates fulfil the constraint, then all others are filtered out. But if all
candidates miss the constraint, all of them pass through, because no
candidate is relatively better than the others. Frank and Satta (1998)
provide a construction called conditional intersection that gives a trans-
ducer implementing this violability. Wartena (2000) shows how to ex-
tend this construction to trees for unidirectional optimality. And Jäger
(2002) provides the extension for optimality theory on regular string
languages.

The proposal by Jäger (2002) can be transfered to regular tree lan-
guages in a rather direct manner. Let R be a rational relation and
L ⊆ Rng(R) be a regular tree language. The conditional intersection
R ↑ L is defined as

R ↑ L := (R ◦ ιL) ∪ (ιDom(R)−Dom(R◦ιL) ◦ R).

For an input markedness constraint represented by L ⊆ Dom(R) we
set dually

R ↓ L := (ιL ◦ R) ∪ (R ◦ ιRng(R)−Rng(ιL◦R)).

These intersections relate individually optimal input and output pairs.
But in bidirectional optimality we are looking for globally optimal pairs.
Hence bidirectional intersection is defined as follows. Let R be a rational

1Bidirectional optimality thus predicts iconicity: the pairing of cheap inputs with
cheap outputs is optimal, but also the pairing of expensive inputs with expensive
outputs. See Blutner’s (1998, 2000) papers for further discussion of this point.

Bidirectional Optimality for Regular Tree Languages / 73

relation and c a binary markedness constraint. Let ∗ be an arbitrary
constant, i.e., a tree consisting of a single node, the root, labelled with
∗. Then

R ⇑ c :=

R ◦ ιRng(({∗}×Rng(R))↑c) if c is an output
markedness constraint

ιDom((Dom(R)×{∗})↓c) ◦ R else

The construction works as follows. {∗}×Rng(R) relates the regular
tree language {∗} to any possible output of R, which is also a regular
tree language. Conditional intersection with c gives
(({∗} × Rng(R)) ◦ ιc) ∪ (ι{∗}−Dom(({∗}×Rng(R))◦ιc) ◦ ({∗} × Rng(R))).
By definition, this is equal to
({∗}× (Rng(R)∩ c)) ∪ (({∗} −Dom({∗}× (Rng(R)∩ c)))×Rng(R)).
Since tree tuple automata are closed under union and their domains
and ranges are obviously regular tree languages, the construction is
well defined. It is defined in such a way that either the left hand side
or the right hand side of the ∪ is the empty relation, depending on
whether Rng(R) ∩ c is empty or not.

If Rng(R)∩c is non-empty, then the above reduces to {∗}×(Rng(R)∩
c). If Rng(R)∩c is empty, then this reduces to {∗}×Rng(R). In either
way, Rng(({∗} × Rng(R)) ↑ c) is the set of outputs of R that are
optimal with respect to c, and it is a regular tree language. Thus R ⇑ c

is a rational relation, and it is the set of pairs (i, o) ∈ R that are
optimal with respect to c. If c is an input markedness constraint, the
dual statements are true.

Lemma 2 Let O = (GEN, C) be an OT-system, where C = (c1, . . . , cp)
is a sequence of binary markedness constraints. Then

(i, o) ∈ GEN ⇑ c1 . . . ⇑ cp

iff (i, o) ∈ GEN and there is no (i′, o′) ∈ GEN such that (i′, o′) <

(i, o).

The proof for this lemma is identical to the proof of Lemma 3 on
page 443 of (Jäger, 2002).

The application of a sequence of constraints C = (c1, . . . , cp) to a
rational relation R can be seen as an operator C(R) := R ⇑ c1 . . . ⇑ cp

filtering out the globally optimal pairs. As a result, R is partitioned
into three sets: C(R), the set B of pairs that share one component
with a pair of C(R) (but not both), and the set U of pairs that share
no component with a pair of C(R). The pairs that share one component
with a pair in C(R) are blocked, they cannot be bidirectionally optimal.
But no statement can be made about the pairs in U . Some of them

74 / Stephan Kepser

may be bidirectionally optimal, some may not. Thus, similarly to the
toy example given before, the filtering procedure has to be applied to
U . And this step of filtering and finding the unmarked pairs has to be
iterated till R is exhausted.

Definition 6 Let O = (GEN, C) be an OT-system. Define

X0 := ∅,

Xn+1 := Xn ∪ C(ιDom(GEN)−Dom(Xn) ◦ GEN

◦ιRng(GEN)−Rng(Xn)),

X :=
⋃

n≥0

Xn.

For every natural number n, Xn+1 adds those pairs to Xn that are
not blocked by Xn and optimal. Hence, X is the set of all bidirectionally
optimal pairs.

Lemma 3 Let O = (GEN, C) be an OT-system. Then (i, o) ∈ X iff

(i, o) ∈ GEN and (i, o) is bidirectionally optimal.

The proof of this lemma is given as the proof of Lemma 4, page 444
of (Jäger, 2002).

As Jäger (2002) remarks, the operation Xn is a cumulative definition
of bidirectional optimality. And on the assumption that GEN and
Xn are rational relations and the constraints are binary markedness
constraints expressable as regular tree languages, the relation Xn+1 is
again a rational relation, i.e., expressable by finite state means. Since
∅ = ∅ × ∅ is a rational relation on trees, bidirectional optimality of
regular tree languages can be computed with finite state techniques
provided the iteration of exhausting GEN terminates after a finite
number of steps, i.e., there is a k ∈ NI such that X = Xk.

Lemma 4 Let O = (GEN, C) be an OT-system with C = (c1, . . . , cp)
where all ci are binary markedness constraints. Then X = X2p−1 .

The proof of this lemma is given as the proof of Lemma 5, page 447 of
(Jäger, 2002).

The following main theorem integrates the observations made in this
section.

Theorem 5 Let O = (GEN, C) be an OT-system with C = (c1, . . . , cp)
where all ci are binary markedness constraints. Furthermore let GEN

be a rational relation and all ci be MSO-sentences. Then the set of

bidirectionally optimal elements of GEN is again a rational relation.

References / 75

5.4 Conclusion

This paper extends the approach by Jäger (2002) for bidirectional op-
timality from regular string languages to regular tree languages. We
have shown that if the generator of an OT-system consists of a linear
frontier-to-root transducer and the constraints are expressed by MSO-
sentences on either the input or the output, then the OT-system can
be rendered by finite state tree automata and tree transducers. This
implies that the complexity of the whole OT-system is not larger than
the complexity of its most complex components.

The most important difference of the construction for tree languages
as compared to the one for string languages can be found in the fact
that we need two types of finte state devices for tree languages. Finite
state string transducer are capable of expressing the Cartesian product
of two regular string languages. Therefore the construction for the com-
putation of optimal pairs needs finite state string transducers only. In
the case of tree language, the situation is different. Cartesian products
of arbitrary regular tree languages cannot be defined by means of LF-
transducers, not even if one allows for ǫ-rules. Therefore we introduced
tree tuple automata into the construction. On the other hand there
exist relations of regular tree languages definable by LF-transducers –
rational relations, as we called them – that cannot be defined by means
of tree tuple automata. These are in particular relations where there is
an intricate relationship between the input and the output trees. Thus
tree tuple automata cannot replace the LF-transducers, and we need
indeed both types of finite state tree devices.

A interesting and important question is whether this approach can be
extended to more complex generation relations that are based context-
free instead of regular tree grammars. These extensions seem rather
difficult. It looks like there is a way to compute the globally optimal
pairs using LF-transducers. But whether the recursion step involved in
bidirectional optimality (the definition of the Xn) can be rendered by
finite state means is doubtful.

References

Blutner, Reinhard. 1998. Lexical pragmatics. Journal of Sematics 15:115–
162.

Blutner, Reinhard. 2000. Some aspects of optimality in natural language
interpretation. Journal of Semantics 17:189–216.

Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacque-
mard, Denis Lugiez, Sophie Tison, and Marc Tommasi. 1997.
Tree automata techniques and applications. Available at:

76 / Stephan Kepser

http://www.grappa.univ-lille3.fr/tata. Release October, 1st
2002.

Courcelle, Bruno. 1990. Graph rewriting: An algebraic and logic approach.
In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, vol. B,
chap. 5, pages 193–242. Elsevier.

Frank, Robert and Giorgio Satta. 1998. Optimality theory and the generative
complexity of constraint violability. Computational Linguistics 24:307–
315.

Gécseg, Ferenc and Magnus Steinby. 1984. Tree Automata. Budapest:
Akademiai Kiado.

Gécseg, Ferenc and Magnus Steinby. 1997. Tree languages. In G. Rozen-
berg and A. Salomaa, eds., Handbook of Formal Languages, Vol 3: Beyond
Words, pages 1–68. Springer-Verlag.

Jäger, Gerhard. 2002. Some notes on the formal properties of bidirectional
optimality theory. Journal of Logic, Language, and Information 11:427–
451.

Jäger, Gerhard. 2003. Recursion by optimization: On the complexity of bidi-
rectional optimality theory. Natural Language Engineering 9(1):21–38.

Kepser, Stephan and Uwe Mönnich. 2003. A note on the complexity of
optimality theory. In G. Scollo and A. Nijholt, eds., Proceedings Algebraic
Methods in Language Processing (AMiLP-3), pages 153–166.

Prince, Alan and Paul Smolensky. 1993. Optimality theory: Constraint in-
teraction in generative grammar. Tech. Rep. RuCCTS-TR 2, Rutgers
University.

Shieber, Stuart. 1985. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy 8:333–343.

Wartena, Christian. 2000. A note on the complexity of optimality systems.
In R. Blutner and G. Jäger, eds., Studies in Optimality Theory , pages 64–
72. University of Potsdam. Also available at Rutgers Optimality Archive
as ROA 385-03100.

