
fsq User Manual

Stephan Kepser

CRC 441, University of Tübingen, Germany
kepser@sfs.uni-tuebingen.de

February 28, 2008

1 Introduction

This small user manual is supposed to complement the description of fsq that can be found in a paper
by Kepser [2]. Whereas [2] gives a general introduction and overview overfsq, this manual expects a
user to know whatfsq is and focuses on how to use it.

Current version offsq: 2.1 – February 2008.

fsq is developed by Stephan Kepser (search engine, user interface) and Hartmut Keck (treebank
browser). It uses the graphics library yFiles by yWorks (http://yworks.com). We would like to
thank yWorks for granting the use of their graphics library.

2 Installation

fsq requires Java (runtime environment or development kit) version 1.6. It may run with earlier ver-
sions (in particular 1.5 and 1.4), but this is not tested and not supported.

fsq consists of one Java library (jar files):fsq.jar. You may store the jar file at any place on your
system that you find appropriate. But the jar file has to be in the class path in order to startfsq. We
also recommend to extend the Java standard heap space upon calling Java (using the option-Xmx).

fsq is developed operating system independent. It is tested to run under Linux, MS Windows, and
Mac OS X. It is likely to also run under Solaris 10.

3 Preprocessing

Before a treebank can be queried, it must be preprocessed. Preprocessing is the process of translating
a data exchange format into a binary format that can be quickly queried. We support the following
two data exchange formats:

• NEGRA export format [1]
Both format 3 and format 4 of NEGRA are supported.

1



• Tiger XML format

The format is detected by file extension. The preprocessor isused on the command line or the graph-
ical user interface. The syntax for use from the command lineis
java fsq.Init Treebankfile
or more explicitely
java -Xmx512M -cp /path/to/fsq.jar fsq.Init Treebankfile
whereTreebankfileis a file name of a treebank, potentially including a path. Example: If you want to
initialise the treebank file/opt/corpora/cd15.export you type
java fsq.Init /opt/corpora/cd15.export

The preprocessor creates a file binarily encoding the treebank. Its name isTreebankfile.cdat. In
order for the preprocessor to be able to do so, the user executing it must have write permission in
the directory containing the treebank file. An existing.cdat-file will be overwrittenwithout prior
confirmation. The input file is read only andnever written to.

During initialisation the preprocessor outputs the tree itis currently processing and the number of
nodes of that tree to standard output. At the end, some statistical information is printed out. Here is
an example:

Number of Trees: 217
Number of POS tags: 38
Number of morph tags: 1
Number of edge labels: 22
Number of secondary relations: 4

The preprocessing can also be started from the graphical user interface described in the next section.

4 Graphical User Interface

The aim of the graphical user interface (GUI) is to simplify the composition of queries and the choice
of a treebank. The GUI is started by
java -jar /path/to/fsq.jar

It is recommended that the Java heap space is expanded when treebanks to be searched exceed the
size of about 5.000 trees. Otherwise one may face Java “Out ofmemory” errors. A prototypicalfsq
start may look like this
java -Xmx512M -jar /path/to/fsq.jar

Upon startup the main window appears: (Figure 1)

To select a treebank the user can type in the treebank file (potentially with a full path, may or may nor
end with the extension.cdat) into the text field to the right of the word “Treebank”. Alternatively,
the user can click onto the word “Treebank”. Doing so opens a file chooser menu that lets one select
the appropriate treebank.

2



Figure 1: GUI upon startup

After a treebank is chosen its signature can be inspected by
choosing the itemTreebankfrom the Info menu. This ac-
tion will open a new window with the signature information.
The user can inspect the different parts of the signature by
choosing the desired item from theSignaturemenu offering
Categories, Morphological Tags, Functions (edge labels)and
Secondary relations. An example of such a window can be
seen on the right side.

The centre of the main window of the GUI consists of a list of formulae. It works as a kind of
note pad for the composition of formulae and queries. The exact syntax of formulae is described in
Section 7. The aim of the GUI is to relieve the user from manually typing these formulae. The GUI
supports the composition of formulae in a bottom-up fashion. The user starts by creating the basic
subformulae using operations from theAtomic menu and then combines these subformulae using
operations from theComplexmenu. Figure 1 shows an example of how the GUI looks like aftersome
of these operations.

The Atomic menu offers operations for the creation of all types of atomic formulae. The typical
procedure is as follows. The user decides on the type of atomic formula to compose and selects the

3



Figure 2: Example of GUI

according menu item. Then he is prompted for the relevant information such as variable names or
tokens or categories. Thereafter the syntactically correct formula is added as the first formula on the
formula list. For example, for dominance, the user is asked for the name of the dominating node
variable, sayx, and for the dominated node variable, sayy. Then the formula(>> x y) is added to
the formula list.

The creation of complex formulae is supported by operationsof theComplexmenu. The prototypical
way here is to first choose a formula or some formulae from the formula list and then pick an operation
from the menu to be performed on the choice. The simplest caseis that of negation. Just click on
a formula from the formula list and chooseNegationfrom theComplexmenu. The negation of the
chosen formula is added to the top of the formula list. For disjunction and negation choose any number
of formulae from the list.1 Then selectConjunctionor Disjunctionand the conjunction or disjunction
of the formulae is added at the top of the list. For an implication, just pick two formulae and choose
the Implication operation. For quantification choose a single formula and select the desired type of
quantification (Existential or Universal). You are prompted for the variable name to quantify over
and after this typed in the quantified formula is added at the top of the list.

When formulae are composed by operations from theAtomic and Complex menu only, they are
guaranteed to always be syntactically correct.

To submit a query, choose a query from the formula list and press theSubmit button. The query is
sent to the query engine which evaluates the query on the chosen treebank. Upon the first hit a new
window opens displaying the hits of the treebank. You can immediately start browsing and inspecting
the hits while the search engine is still running. The set of hits is regularly updated when there are
more hits found. The treebank browser is described in Section 5.

TheForm menu contains operations for manually editing formulae. The New item opens a window
to manually type in a new formula. TheEdit item opens a window to manually edit a formula chosen
from the formula list before selectingEdit. For copying, choose a formula and select theDuplicate

1To do so, click on a formula and then press and hold down theShift or Control key while clicking on the next formula.
With Control pressed you add just one more formula at a time. WithShift pressed you add the clicked formula and
everything inbetween the clicked and the last chosen formula.

4



operation. It will add a copy of the chosen formula as the topmost element of the formula list. To
delete a formula, click on in and selectDelete. TheSwapoperation exchanges the position of two
selected formulae in the formula list. It can be used to set upthe right order of two formulae for
forming their implication. When two formulae are selected for implication, it is always the higher
one that will be the premise. The lower one gives the consequence. If by coincidence a user enters
the intended premise before the intended consequence, the intended premise will show up below the
intended consequence. If the user picks the two for forming the implication, he will get the opposite
of the result he intended. The simplest way out of this problem is to exchange the positions of the two
formulae usingSwap. The last item in theForm menu,Clear all, allows the user to clear the whole
list of formulae.

TheFile menu contains operations for saving and loading formula lists. If the user wishes to save his
current formula list, he can select theSave asitem. It opens a file chooser menu to enter a file name
by which the formula list will be saved. If the user has already selected a file name, theSaveitem will
save the current formula list under that name. The current file name is displayed below theSave as
item. A formula list can be reloaded with theOpen item. This operation deletes the current formula
list and replaces it by the one in the specified file.

On a side remark, the formula list is actually just a list of lines of characters. This fact can be used to
enhance such a list by comments, if desired. Just use theNew operation from theForm menu to type
in a line of comment. These comment lines will certainly be saved and loaded as any other formula
lines.

The File menu offers a menu itemOpen treebank. This item opens the treebank browser described
in the next section. TheFile menu also offers a menu itemInitialise treebank. This item allows the
preprocessing of a treebank as described in Section 3. One just chooses the treebank import file to
be processed and the name of the binary coded treebank file. Please note that in difference to the
command line version the GUI version of the preprocessor does not produce any progress information
at all. All one can see is a final completion message similar tothe one described for the command line
version.

TheInfo menu contains besides the above mentionedTreebankitem an item displaying anfsq version
information.

To exit the GUI select theQuit item in theFile menu.

Error Handling

If an error occurs during processing a query, a window opens displaying the error and some context
information.

5 Treebank Browser

fsq comprises a treebank browser. It serves two purposes. Firsty it allows the user to browse a
complete treebank. Secondly and more importantly it is usedto display query results. The user
interface is shown if Figure 3.

The centre of the window shows a tree from the treebank. You may zoom into or out of the tree.
You may also select an area of the tree and zoom into it. The navigation block below allows to move

5



Figure 3: The treebank browser

through the treebank. The progress status information to the right tells you whether the query is still
running in the background or not. The information block at the left side displays the number of trees
found for the query, or the total number of trees in the treebank.

TheFile menu offers the options to export the currently displayed tree as a graphics image or to print
this tree. One may also export the hits of the query as a file containing a list of tree ids. This maybe
used as input for tools such as @nnotate.

To quit the treebank browser, choose the optionClosefrom theFile menu.

TheOptionsmenu allows to configure which information is displayed below the token level of a tree.
These may be lemmata or morphological informations.

Note that you may have several open treebank windows, e.g., for different queries.

6 Command Line Interface

There exists a simple command line interface to the query component. It is used as follows:
java fsq.query query treebank[result]
wherequery is a query as defined in Section 7. Please note that you have to protect spaces in the

6



query against the shell. This is best done by surrounding thewhole query with single or double
quotes. treebankis the name of the treebank to be queried. It can contain a path, but it must not
contain any file extension. The file extension.cdat is assumed. Example:
java fsq.query "(E x (tok x Tanz))" /opt/corpora/cd15

The optional argumentresult specifies the name of the result file. The result of the query isput into a
file. This file consists of the tree ids (numbers) of those trees for which the query is true. All of these
ids are in a single line, each two of them being separated by a space. This format is suitable as input
for the @nnotate tool. If no result file name is specified, the default treebank.res is chosen. In this
case, the user executing the query must have write permission in the directory of the treebank.

While the query engine is running the number of the tree on which the query is currently processed is
printed out to show that the engine is still alive.

Error Handling

Errors occurring during querying from the command line do not lead to opening an error window.
Rather they lead to immediate program termination. The typeof error is returned via the system exit
code. An exit code of 1 indicates asystem error. This can be a file input/output error, but also a
an array out of bounds error that occurs when the query contains a free variable. An exit code of 2
indicates aparsing error. The query could not be parsed. An exit code of 3 indicates acalling error.
The comand line interface was called with the wrong arguments.

7 Formulae

A variable is a string of letters or numbers, delimited by white space orbraces. Examples:x,y, z,
v12, V21, 3, . . .

The syntax offormulae is LISP-like, i.e., each (sub-) formula is surrounded by braces(), and there is
a strict prefix notation, the functional head always comes first.

Formulae are divided into atomic formulae and complex formulae. Atomic formulae are further di-
vided into 4 groups. The first two groups comprise formulae for node labels (without or with regular
expressions), the third group comprises relations betweennodes and the fourth group contains a single
formula for regular expression search of tokens.

(In the following, letx andy be variables,ϕ,ϕ1,ϕ2,ϕ3, . . . andψ formulae, and lethd be a secondary
edge name from the treebank. )

Atomic node label formulae

• (tok x T)
nodex has token (terminal string)T.

• (lem x L)
nodex has lemmaL.

• (cat x C)
nodex is of category (has POS tag)C.

7



• (mor x M)
nodex has morphological tagM.

• (fct x F)
nodex is of grammatical function (has edge label)F.

Atomic node label formulae with regular expressions

• (tokR x T)
the token (terminal string) ofx matches RET.

• (lemR x L)
the lemma ofx matches REL.

• (catR x C)
the category ofx matches REC.

• (morR x M)
the morphological tag ofx matches REM.

• (fctR x F)
the function (edge label) ofx matches REF.

The regular expressions are those provided by Java. A documentation can be found at the following
location:http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html.

Atomic node relations

• (> x y)
nodex is the mother ofy.

• (>> x y)
nodex dominatesy.
>> is the reflexive transitive closure of>.

• (>+ x y)
nodex properly dominatesy.
>+ is the transitive closure of>.

• (. x y)
nodex immediately precedesy.

• (.. x y)
nodex precedesy.

• (hd x y)
there is ahd-secondary edge fromx to y.

• (= x y)
equality ofx andy.

• (!= x y)
disequality ofx andy.

8



Linear precedence is defined bottom up. I.e., it is firstly defined on the terminal nodes, because they
have a clearly defined linear order. For internal nodesx andy it is defined thatx precedesy iff the
complete subtree dominated byx precedes the complete subtree dominated byy. In case of crossing
branches this means that neitherx precedesy nor vice verse.

RE string search

• (sent R)
the frontier, i.e, concatenation of all terminal strings, separated by blanks, contains a substring
that matchesR.
This formula is the only variable free atomic formula.

Complex Formulae

• (! ϕ)
negation ofϕ.

• (& ϕ1 . . .ϕn)
conjunction ofϕ1 . . .ϕn.

• (| ϕ1 . . .ϕn)
disjunction ofϕ1 . . .ϕn.
Disjunctions and conjunctions can have arbitrary width.

• (-> ϕ ψ)
implication: ϕ impliesψ.

• (A x ϕ)
universal quantification ofx.

• (E x ϕ)
existential quantification ofx.

Queries

A query is a closed formula, i.e., a formula where each variable is either existentially or universally
quantified. The query component cannot process open formulae. Only closed formulae are processed
error-free. Submitting open formulae will lead to strangeArray out of boundserror messages.

The semantics of formulae is classical first-order logic semantics (on finite structures).

8 Unsupported Features

fsq actually supports queries in monadic second-order logic, not just first-order logic. But users are
strongly discouraged to pose MSO queries. The evaluation ofeven the simplest queries with set quan-
tification may take more than a day when performed on a typicaltreebank with several tenthousand
trees. Hence this feature is not supported by the user interface.

9



Still, the search engine can in principle handle these queries, and they can be typed in directly using
theNew item in theForm menu. Here are the additional formulae that can be handled. We follow the
usual convention of using capital letters for set variables. There are two atomic formulae.

• (mem x X)
individual x is a member of setX.

• (sub X Y)
setX is a subset of setY.

And there is MSO quantification.

• (A2 X ϕ)
universal set quantification ofX.

• (E2 X ϕ)
existential set quantification ofX.

9 Version History

Version 2.0 – January 2008

TigerXML as supported treebank input format.

Version 2.0 – January 2008

Major recoding, bug fixes, new jar structure.

Version 1.5 – 13th January 2006

Treebank browser for search results or complete treebank.

Version 1.4

Multithreading.

Version 1.3.1 – 18th November 2004

Regular expression search for categories, morphological tags, edge labels, and the frontier.

Version 1.2.2 – 5th March 2004

Bug fixes for batch mode: no progress bar pop-up window.

Version 1.2.1 – 16th Dec 2003

Search progress bar for GUI.

10



Version 1.2 – 3rd Dec 2003

Some extensions of the query language: Regular expression search on tokens; proper dominance;
disequality.
Re-initialise treebanks: yes.

Version 1.1.1 – 27th Nov 2003

Important bug fixes for (linear) precedence.
Re-initialise treebanks: yes.

Version 1.1 - 9th April 2003

Major enhancements.

Version 1.0 - 3rd Feb 2003

First version out.

10 Known Problems

Out of Memory Error

During the initialisation or querying of a large treebank (more than 5.000 trees) one may encounter an
Exception in thread "main" java.lang.OutOfMemoryError.
This is a problem of the Java Virtual Machine. Grant it more memory by using the-Xmx option. E.g.:
java -Xmx512M -jar fsq.jar
supposing your computer has more than 512MB Ram. It is recommended to grant the Java VM as
much memory as possible.

References

[1] Thorsten Brants. The NEGRA Export Format. CLAUS Report 98, Universität des Saarlandes,
Computerlinguistik, Saarbrücken, Germany, 1997.

[2] Stephan Kepser. Finite Structure Query: A Tool for Querying Syntactically Annotated Corpora.
In Ann Copestake and Jan Hajič, editors,Proceedings EACL, pages 179–186, 2003.

[3] Oliver Plaehn and Thorsten Brants. Annotate – An Efficient Interactive Annotation Tool. InSixth
Conference on Applied Natural Language Processing (ANLP-2000), 2000.

11


