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Abstract

In this paper we show that non-context-free phenomena can be captured using only
limited logical means. In particular, we show how to encode a Tree Adjoining Gram-
mar [16] into a weakly equivalent monadic context-free tree grammar (MCFTG).
By viewing MCFTG-rules as terms in a free Lawvere theory, we can translate a
given MCFTG into a regular tree grammar. The latter is characterizable by both a
tree automaton and a corresponding formula in monadic second-order (MSO) logic.
The trees of the resulting regular tree language are then unpacked into the intended
“linguistic” trees through a model-theoretic interpretation in the form of an MSO
transduction based upon tree-walking automata. This two-step approach gives a
logical as well as an operational description of the tree sets involved.

1 Introduction

Algebraic, logical and regular characterizations of (tree) languages provide a
natural framework for the denotational and operational semantics of grammar
formalisms relying on the use of trees for their intended models.

In the present context the combination of algebraic, logical and regular
techniques does not only add another description of mildly context-sensitive
languages to an already long list of weak equivalences between grammar for-
malisms. It also makes available the whole body of techniques that have been
developed in the tradition of algebraic language theory, logic and automata
theory.
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For regular string and tree languages, classical results in the descriptive
theory of recognizability have established a tight connection between logical
formalisms and language classes. They provide translation procedures that
transform logical specifications into finite automata equivalent to the language
classes and vice versa. Büchi [3] and Elgot [7] have shown that regular string
languages represented through finite (string) automata can be expressed by
sentences in the weak MSO logic with one successor. For tree languages an
analogous result is well known: a tree language is definable in weak MSO
logic with multiple successors if and only if it is recognizable by a finite tree
automaton [6,32].

It is these earlier characterizations that provide the reason for a renewed
interest in logical approaches to grammar specifications. The main open ques-
tion in this area of research is whether an appropriate extension of the MSO
language can be found which is expressive enough to define significant proper-
ties of natural languages without becoming too unwieldy from the perspective
of complexity theory.

We believe, similarly to the claims in Pullum and Scholz [28], that model-
theoretic approaches to syntax represent an important aspect of the formal
analysis of natural language formalisms. In the present context we try to
circumvent the problems posed by the limited expressive power of MSO by
developing the model-theoretic description in terms of a two-step approach.
We choose Tree Adjoining Grammar (TAG) [13,14,15] as maybe the prototyp-
ical mildly context-sensitive formalism 4 for natural languages to illustrate our
proposal for a denotational approach towards a generative, non-context-free
formalism.

The first step in the approach proposed in this paper consists in the use of
a type of tree grammars which can be “lifted”, i.e., a certain amount of control
information is explicitly coded in the trees, such that the resulting tree sets are
amenable to formalizations in terms of tree automata and MSO logic. In par-
ticular, we will use a restricted form of context-free tree grammars (CFTGs),
namely monadic CFTGs which have an adequate descriptive complexity (see
Section 2.3 below). Since the weak equivalence between TAGs and monadic
CFTGs has independently been proven by Mönnich [24] and Fujiyoshi and
Kasai [12], CFTGs form an adequate basis for the following work. Finally, a
second step is necessary to remove the explicit control information from the
trees to recover the linguistically intended structures.

Recently, Jim Rogers has shown that tree-adjoining languages can be
characterized in terms of a monadic second-order definition on the three-
dimensional tree manifolds [30]. We plan to work out in a future paper the
exact relationship between the introduction of a further tree dimension and
the device of higher types in the specification of lifted vocabularies.

4 In fact, the desiderata Joshi enumerates for any formalism dealing with natural languages
coined this terminology.
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2 Preliminaries

2.1 Universal Algebra

Recall that for a given set of sorts S, a many-sorted alphabet Σ (over S) is an
indexed family 〈Σw,s |w ∈ S

∗, s ∈ S〉 of disjoint sets. A symbol σ ∈ Σw,s is an
operator of type 〈w, s〉, arity w, sort s and rank |w|. The elements of Σε,s are
also called constants (of sort s).

In case S is a singleton set {s}, i.e., in case Σ is a single-sorted or ranked
alphabet (over sort s), we usually write Σn to denote the (unique) set of
operators of rank n ∈ N. 5

In later sections of the paper we will mainly use the single-sorted case
of alphabets. We will indicate the need for many-sorted alphabets where
necessary.

For such a ranked alphabet Σ, we denote by T (Σ) the set of trees over
Σ. T (Σ) is inductively defined with base case Σ0 ⊆ T (Σ) and recursive step
f(t1, . . . , tn) ∈ T (Σ) if f ∈ Σn and ti ∈ T (Σ) for i = 1, . . . , n.

Furthermore, we fix an indexed set X = {x1, x2, . . .} of variables and de-
note by Xn the subset {x1, . . . , xn}. Variables are considered to be constants,
i.e., operators of rank 0. For a ranked alphabet Σ the family T (Σ, X) is defined
to be T (Σ(X)), where Σ(X) is the ranked alphabet with Σ(X)0 = Σ0∪X and
Σ(X)n = Σn for every n 6= 0. A subset L of T (Σ) is called a tree language
over Σ.

Having described the tree terms, it remains to specify the central notion
of an algebra and to give a precise definition of the way in which the operator
symbols induce operations on an algebra.

Suppose that Σ is a ranked alphabet. A Σ-algebra A is a pair A =
(A, (fA)f∈Σ) where the set A is the carrier of the algebra and for each op-
erator f ∈ Σn, fA : An → A is an operation of arity n on A.

Different algebras, defined over the same operator domain, are related to
each other if there exists a mapping between their carriers that is compatible
with the basic structural operations.

A Σ-homomorphism of Σ-algebras h : A −→ B is a function h : A −→ B,
such that h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for every operator f of rank
n and for every n-tuple (a1, . . . , an) ∈ A

n.

The set of trees T (Σ, X) can be made into a Σ-algebra T(Σ, X) by defining
the operations in the following way. For every f in Σn, for every (t1, . . . , tn)
in T (Σ, X)n: fT(Σ,X)(t1, . . . , tn) = f(t1, . . . , tn).

Every variable-free tree t ∈ T (Σ) has a value in every Σ-algebra A. It is
the value at t of the unique homomorphism h : T(Σ)→ A.

The existence of a unique homomorphism from the Σ-algebra of trees into
an arbitrary Σ-algebra A provides also the basis for the view that regards the

5 Note that for S = {s} each 〈w, s〉 ∈ S∗ × S is of the form 〈sn, s〉 for some n ∈ N.
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elements of T (Σ, Xn) as derived operations. Each tree t ∈ T (Σ, Xn) induces
an n-ary function tA : An → A.

The meaning of this function tA is defined in the following way. For every
(a1, . . . , an) ∈ A

n: tA(a1, . . . , an) = â(t), where â : T(Σ, Xn)→ A is the unique
homomorphism with â(xi) = ai.

In the particular case where A is the Σ-algebra T(Σ, Xm) of trees over Σ
that contain at most variables from Xm = {x1, . . . , xm} at their leaves the
unique homomorphism extending the assignment of a tree ti ∈ T (Σ, Xm) to
the variable xi in Xn acts as a substitution tT(Σ,Xm)(t1, . . . , tn) = t[t1, . . . , tn]
where the right hand side indicates the result of substituting ti for xi in t.

2.2 Tree Adjoining Grammar

The main obstacle for the simple and direct use of MSO logic stems from the
fact that linguistic theories allow non-context-free structures and therefore
cannot be accommodated within the classical approach outlined in Rogers’
monograph [29]. In this section we will sketch a definition of tree adjoin-
ing grammars following Vijay-Shanker and Weir [34] and Joshi and Schabes
[16]. This formalism has a descriptive complexity which is higher than that of
context-free grammars. Additionally, TAGs are a derivational formalism and,
hence, a logical approach towards describing the resulting tree sets presents a
further problem.

Definition 2.1 (Tree Adjoining Grammar) A Tree Adjoining Grammar
(TAG) is a quintuple 〈VN , VT , S, I,A〉 where VN is a finite set of nonterminals,
VT a finite set of terminals, S ∈ VN the start symbol, I a finite set of initial
trees and A a finite set of auxiliary trees.

Initial trees are such that all interior nodes (including the root node) are
labeled with nonterminals and all nodes on the frontier are labeled with termi-
nal or nonterminal symbols; the nonterminals being marked for substitution.
The same holds for the auxiliary trees with one exception. There exists one
distinguished leaf-node which is labeled with the same nonterminal as the root
node, which is called the foot node. Furthermore, the nodes can be marked
to allow or forbid adjunction. For simplicity, we only indicate nodes where no
adjunction is allowed by putting a bar on top of them.

New trees are built from the sets I and A via adjunction or substitution.
Adjunction is defined such that an auxiliary tree is spliced into an existing tree
such that it basically “expands” a nonterminal. A subtree rooted in the node
labeled with a nonterminal A is taken out of the a tree. A new auxiliary tree
is inserted in its place (if the root and foot are also labeled with the identical
nonterminal A) and the original subtree is appended at the foot node. There
also exists a simpler operation in TAGs, called substitution, to generate new
trees. Intuitively, in substitution, a nonterminal is replaced by a tree with a
matching nonterminal at its root. Since we do not need the formal definitions
in this paper, the reader is referred to the literature cited above for details.
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The corresponding tree and string languages are defined in the obvious way.
An example for a TAG generating the non-CF language anbncndn is given
below:

Example 2.2 Let GTAG = 〈{S}, {a, b, c, d}, S, {α}, {β}〉 be a TAG. The only
initial tree α and the only auxiliary tree β are given as follows:
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A derivation yielding aabbccdd has only two steps, both adjoin the auxiliary
tree in the only possible position, see Figure 1.
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Fig. 1. An example derivation of the TAG GTAG given in Example 2.2

It can be shown that TAGs can only generate string languages with de-
pendencies up to four, i.e., anbncndn can be generated, but there is no TAG
which generates anbncndnen [16].

2.3 Context-Free Tree Grammars

The algebraic perspective allows the uniform and natural extension from
strings to trees by the simple technique of generalizing from unary to multi-
ary operators. In this section, grammars working on strings are generalized
to grammars working on trees. Thus we have a natural counterpart to the
Chomsky hierarchy: regular tree grammars correspond to the known regular
grammars and context-free tree grammars to the context-free grammars.

We now formally introduce the notion of a context-free tree grammar
(CFTG). This type of grammar is related to a type of grammars which were
defined by Fisher [10] and which were called macro grammars. In his setting,
the use of macro-like productions served the purpose of making simultaneous
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string copying a primitive operation. CFTGs constitute an algebraic general-
ization of macro grammars (cf. Rounds [31]).

Let us view grammars as a mechanism in which local transformations on
trees can be performed. The central ingredient of a grammar is a finite set of
productions, where each production is a pair of trees. Such a set of productions
determines a binary relation on trees such that two trees t and t′ stand in that
relation if t′ is the result of removing in t an occurrence of a first component
in a production pair and replacing it by the second component of the same
pair. The simplest type of such a replacement is defined by a production that
specifies the substitution of a single-node tree t0 by another tree t1. Two trees
t and t′ satisfy the relation determined by this simple production if the tree t′

differs from the tree t in having a subtree t1 that is rooted at an occurrence of
a leaf node t0 in t. In slightly different terminology, productions of this kind
incorporate instructions to rewrite auxiliary variables as a complex symbol
that, autonomously, stands for an element of a tree algebra. Recall that in
context-free string grammars a nonterminal auxiliary symbol is rewritten as a
string of terminal and nonterminal symbols, independently of the context in
which it occurs. As long as the carrier of a tree algebra is made of constant
tree terms the process of replacing null-ary variables by trees is analogous.
As we will see, the situation changes dramatically if the carrier of the algebra
is made of symbolic counterparts of derived operations and the variables in
production rules range over these second-level entities.

Definition 2.3 (Context-Free Tree Grammar) Let S be a singleton set
of sorts. Then a context-free tree grammar (CFTG) for S is a 5-tuple Γ =
〈Σ, F, S,X,P〉, where Σ and F are ranked alphabets of inoperatives and op-
eratives over S, respectively. S ∈ F is the start symbol, X is a countable
set of variables, and P is a set of productions. Each p ∈ P is of the form
F (x1, · · · , xn) −→ t for some n ∈ N, where F ∈ Fn, x1, · · · , xn ∈ X, and
t ∈ T (Σ ∪ F, {x1, · · · , xn}).

Intuitively, an application of a rule F (x1, . . . , xn)→ t “rewrites” a tree rooted
in F as the tree t with its respective variables substituted by F ’s daughters.

A CFTG Γ = 〈Σ, F, S,X,P〉 with Fn = ∅ for n 6= 0 is called a regular
tree grammar (RTG). Since RTGs always just substitute some tree for a leaf-
node, it is easy to see that they can only generate recognizable sets of trees,
a forteriori context-free string languages [22]. If Fn is non-empty for some
n 6= 0 , that is, if we allow the operatives to be parameterized by variables,
however, the situation changes. CFTGs in general are capable of generating
sets of structures, the yields of which belong to the subclass of context-sensitive
languages known as the indexed languages. In fact, CFTGs characterize the
class of indexed languages modulo the inside-out derivation mode [31].

For reasons having to do with the impossibility of mirroring the process of
copying in a grammar with a completely uncontrolled derivation regime, we
restrict ourselves to this particular mode of derivation. Accordingly, a function
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symbol may be replaced only if all its arguments are trees over the terminal
alphabet. In the conventional case this form of replacement mechanism would
correspond to a “rightmost” derivation where “rightmost” is to be understood
with respect to the tree order.

The definition of a CFTG given above could be canonically generalized to
the case of many-sorted signatures Σ and F over some set of sorts S. Since
we will be concerned with such generalized versions of CFTGs only in their
regular form, we will not give a new definition but rely on the definition of a
many-sorted alphabet in Section 2.1 and reader’s intuition.

Finally, since we need to show how to handle TAGs within the framework
of CFTGs, we also define monadic context-free tree grammars (MCFTGs).
Since they are only a simplification of Definition 2.3, we outline only the
differences here.

Definition 2.4 (Monadic Context-Free Tree Grammar) Given a set of
sorts S, a monadic context-free tree grammar (MCFTG) for a set of sorts S
is a 5-tuple Γ = 〈Σ, F0 ∪ F1, S,X,P〉, i.e., a CFTG, where all the rules in P

are of one of the following “unary” types (A,B,C,Bi ∈ F1 ∪ F0, 1 ≤ i ≤ n,
a ∈ Σ, x ∈ X):

A −→ a

A −→ B(C)

A(x) −→ a(B1, . . . , Bi−1, xi, Bi+1, . . . , Bn)

A(x) −→ B1(B2(. . . Bn(x) . . . ))

Interestingly, it has been shown by Mönnich [24] and Fujiyoshi and Kasai
[12] that TAGs are weakly equivalent to this restricted form of CFTGs. To
a large extend, the intuition behind the proof is fairly simple. Since CFTGs
can insert multiple subtrees in a single step, but TAGs only a single one, all
we have to do is limit the operative nonterminals of the CFTG to unary or
monadic ones.

Since the proof is constructive, i.e., there exists an algorithm to transform
any given TAG into an equivalent monadic CFTG, we will silently assume in
the following sections that it is enough to deal with (M)CFTGs.

As an example, we present an MCFTG ΓTAG for anbncndn generating the
same language as the TAG grammar GTAG given in Example 2.2.

Example 2.5 Consider the MCFTG ΓTAG = 〈{a, b, c, d, ε, St, S
0
t }, {S, S

′, S1,

S2, a, b, c, d}, S
′, {x},P〉 resulting from a translation of the TAG GTAG with P

given as follows

S ′ −→ S(ε) a −→ a

S(x) −→ S1(S(S2(x))) b −→ b

S(x) −→ S0t (x) c −→ c

S1(x) −→ St(a, x, d) d −→ d

S2(x) −→ St(b, x, c)

7
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A corresponding derivation of the string abbccdd is shown in Figure 2. The
example derivation is somewhat longer than the one given for the almost
identical TAG grammar generating the same language. This is due to the fact
that we need nonterminals to introduce each branching of the resulting tree
separately. In the first step, we simply rewrite the start symbol. In the second
one, the symbol S with the term S1(S(S2(x))) where the (degenerate) tree ε is
simply appended to the only argument position x of S2. This step is repeated
before we terminate with an application of the rule rewriting S as S0t . We
simplified the presentation in the sense that in this last step we also applied
the rules for the “barred” operatives, i.e., we replaced each S i, i ∈ {1, 2} with
the corresponding term and each s ∈ {a, b, c, d} with s.
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Fig. 2. An example derivation of the MCFTG ΓTAG from Example 2.5

3 Lifting

We designate the process which makes the control information inherent in
term based grammar formalisms explicit by the term lifting. The intuition
here is that the basic assumptions about the operations of tree substitution
and argument insertion are made explicit. We make them visible by inserting
the “control” information which allows us to code the resulting structures with
regular means, i.e., regular tree grammars or finite-state tree automata and
therefore with MSO logic.

3.1 lifting CFTGs

The intuition behind the lifting process is that each term compactly encodes
information such as composition and concatenation.

Any context-free tree grammar Γ for a singleton set of sorts S can be
transformed into a regular tree grammar ΓL for the set of sorts S∗, which
characterizes a (necessarily recognizable) set of trees encoding the instruc-
tions necessary to convert them by means of a unique homomorphism h into
the ones the original grammar generates [21]. This “lifting” is achieved by
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constructing for a given single-sorted signature Σ a new, derived alphabet
(an N-sorted signature) ΣL, and by translating the terms over the original
signature into terms of the derived one via a primitive recursive procedure.
The lift-operation takes a term in T (Σ,Xk) and transforms it into one in
T (ΣL, k). 6 Intuitively, the lifting eliminates variables and composes func-
tions with their arguments explicitly, e.g., a term f(a, b) = f(x1, x2) ◦ (a, b) is
lifted to the term c(c(f, π1, π2), a, b). The old function symbol f now becomes
a constant, the variables are replaced with appropriate projection symbols and
the only remaining non-nullary alphabet symbols are the explicit composition
symbols c.

Definition 3.1 (lift) Let Σ be a ranked alphabet and Xk = {x1, . . . , xk}, k ∈
N, a finite set of variables. The derived N-sorted alphabet ΣL is defined as
follows: For each n ≥ 0, Σ′ε,n = {f ′ | f ∈ Σn} is a new set of symbols of type
〈ε, n〉; for each n ≥ 1 and each i, 1 ≤ i ≤ n, πni is a new symbol, the ith
projection symbol of type 〈ε, n〉; for each n, k ≥ 0 the new symbol c(n,k) is the
(n, k)th composition symbol of type 〈nk1 · · · kn, k〉 with k1 = · · · = kn = k.
The set of all c(n,k) will be denoted by C, the set of all πni by Π.

ΣL
ε,0 = Σ′ε,0

ΣL
ε,n = Σ′ε,n ∪ {π

n
i | 1 ≤ i ≤ n} for n ≥ 1

ΣL
nk1···kn,k

= {c(n,k)} for n, k ≥ 0 and ki = k for 1 ≤ i ≤ k

ΣL
w,s = ∅ otherwise

For k ≥ 0, liftΣk : T (Σ,Xk)→ T (ΣL, k) is defined as follows:

liftΣk (xi) = πki

liftΣk (f) = c(0,k)(f
′) for f ∈ Σ0

liftΣk (f(t1, . . . , tn)) = c(n,k)(f
′, liftΣk (t1), . . . , lift

Σ
k (tn))

for n ≥ 1, f ∈ Σn and t1, . . . , tn ∈ T (Σ, Xk)

Note that this very general procedure allows the translation of any term over
the original signature. The left hand side as well as the right hand side (RHS)
of a rule of a CFTG Γ = 〈Σ, F,X, S,P〉 is just a term belonging to T (Σ∪F,X),
but so is, e.g., any structure generated by Γ.

Further remarks on the observation that the result of lifting a CFTG is
always an RTG can be found in Mönnich [25].

6 Since S is a singleton, we can identify S∗ with N. By T (ΣL, k) we denote the set of all
trees over ΣL which are of sort k.
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Lifting MCFTGs uses the same definitions for lifting as is used for gen-
eral CFTGs. The translation process for grammars has at its heart the lift-
morphism for the translation of the alphabets of the operatives and inopera-
tives and the RHSs of the production rules. Since the rest of the translation
follows trivially from this, we dispense with a formal definition. Note that for
better readability, we omit all the 0- and 1-place composition symbols. To
further illustrate the techniques, we present the continuation of Example 2.5.

Example 3.2 Let ΓLTAG = 〈{a, b, c, d, ε, St, S
0
t }, {S, S

′, S1, S2, a, b, c, d}, S
′,P〉

with P given as follows

S ′ −→ c(1,0)(S, ε)

S −→ c(1,1)(S1, c(1,1)(S, c(1,1)(S2, π
1
1)))

S −→ c(1,1)(S
0
t , π

1
1)

S1 −→ c(3,1)(St, a, π
1
1, d)

S2 −→ c(3,1)(St, b, π
1
1, c)

Note that we now have only null-ary operatives but extra composition and
projection symbols.

We parallel the derivation given in Figure 2 with the new grammar as
given in Figure 3. Note that nonterminals are now simply replaced by entire
subtrees and no extra insertions take place.

4 Coding the lifted Structures

In the previous section we have shown how to code the non-CF structures
with regular tree grammars via lifting. In the next section, we will show
how to code RTGs themselves with finite-state tree automata (FSTAs) and
MSO logic.

4.1 Tree Automata

Since ΓLTAG in (3.2) generates a regular set of trees, we can construct a tree
automaton AΓL

TAG
= 〈Q,Σ, δ, q0, Qf〉 to recognize this set.

Recall that a (deterministic) bottom-up tree automaton (FSTA) A is a 5-
tuple 〈A,Σ, δ, a0, F 〉 with A the (finite) set of states, Σ a ranked alphabet,
a0 ∈ A the initial state, F ⊆ A the final states and δ :

⋃

n(A
n × Σn)→ A the

transition function.

We can extend the transition function inductively to trees by defining
hδ(ε) = a0 and hδ(σ(t1, . . . , tn)) = δ(hδ(t1), . . . , hδ(tn), σ), ti ∈ TΣ, 1 ≤ i ≤
n, σ ∈ Σn. An automaton A accepts a tree t ∈ TΣ iff hδ(t) ∈ F . The language
recognized by A is denoted by T (A) = {t |hδ(t) ∈ F}.
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Fig. 3. An example derivation of the lifted MCFTG ΓLTAG given in Example 3.2

Intuitively, such a tree automaton starts on the leaves of a tree in an initial
state and then moves toward the root by making transitions according to the
states “labeling” the daughters and the alphabet symbol labeling the mother.

Construction of a tree automaton from a given lifted context-free tree
grammar ΓL = 〈ΣL, FL, S ′,PL〉, i.e., an RTG, is straightforward. Since tree
automata recognize only local trees in each transition, we have to use auxiliary
transitions for RHSs of lifted macro productions consisting of trees of depth
greater than one in order to recognize the correct trees incrementally. So, what
we are doing is to decompose the RHSs into trees of depth one which then can
be recognized by a transition, i.e., in a preliminary step we have to transform
ΓL into a normal form ΓNF = 〈ΣL, FNF , S ′,PNF 〉 via the introduction of aux-
iliary rules and new nonterminals. In our example, the lifted tree grammar is
not in the desired normal form, but it is easy to see how to change this. The
resulting rules and nonterminals are reflected both in the new transitions and
in the states we need. In the following, we assume without loss of generality,
that the trees on the RHSs of the lifted macro productions are of depth one.

Recall furthermore that, according to the definition above, a tree automa-
ton operates on a ranked alphabet Σ = 〈Σn |n ∈ N〉. Therefore, in our
case, we use the inoperative symbols of the lifted grammar to construct Σ,
but we reduce the explicit many-sorted type information by defining Σn as
{σ ∈ ΣL | rank(σ) = n}. For the set of states Q, we need distinguishable
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states for each of the terminals, nonterminals and projection symbols appear-
ing in RHSs of the rules, i.e., Q = {qσ |σ ∈ ΣL

ε,s ∪ F
NF}∪{q0}.

7 Furthermore,
we need a new initial state q0. In the automaton, the state which corresponds
to the start symbol S ′ of the grammar becomes the single final state, i.e.,
Qf = {qS ′}.

Since our tree automata work bottom up, we have to start the processing
at the bottom by having transitions from the new initial state to a new state
encoding the fact that we read a particular symbol on the frontier of the tree.
Accordingly, together with the transitions encoding the productions, we have
to construct two kinds of transitions in δ:

• transitions from the initial state on all subtrees reading a terminal σ, i.e.,
elements of all the Σi from Γ, to the corresponding state; i.e., q0 × σ → qσ;

• transitions recognizing the internal structure of the local trees appearing
in RHSs, i.e., from the states corresponding to the leaves of a tree on a
RHS to the nonterminal D of the left hand side, i.e., for each lifted tree
grammar production of depth one D −→ c(d1, . . . , dn) we have to construct
a transition in the automaton as follows: qd1 × · · · × qdn × c→ qD.

4.2 MSO Logic

Alternatively, we can also code RTGs with MSO logic. The standard way of
doing this requires that we first construct the corresponding tree automaton.

In Thomas [33] tree automata are converted to formulas in MSO logic
by basically encoding their behaviour. Under the assumption that Q =
{0, . . . ,m} with q0 = 0, the (closed) Σ11-formula ϕA

ΓL
TAG

given there adapted to

our signature and for maximally 4-ary tree automata reads as given below. 8

Intuitively, the sets Xi label the tree where the automaton assumes state
i. The first two lines of the formula say that we cannot have a node which
is in two states and that X0 is our “initial” set; the third one licenses the
distribution of the sets according to the transitions and the last one says that
we need a root node which is in a “final” set.

ϕA
ΓL
TAG

def
⇐⇒ (∃X0, . . . , Xm)[

∧

i6=j

(¬∃y)[y ∈ Xi ∧ y ∈ Xj] ∧

(∀x)[leaf(x)→ x ∈ X0]

∧

1≤l≤4

(∀x1, . . . , xl, y)[
∨

(i1,...,il,σ,j)∈δ
1≤k≤l

xk ∈ Xik ∧ y ¢ xk ∧ y ∈ Xj ∧ y ∈ Pσ]

∨

i∈Qf

(∃x∀y)[x¢∗ y ∧ x ∈ Xi]

7 We do not need states for the composition symbols since each composition corresponds
to a nonterminal due to the normal form.
8 Pa stands for the predicate labeling a node with the symbol a and leaf(x)

def
⇐⇒ (¬∃y)[x¢y].
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In Kolb et al. [19] we also propose a way of directly coding the behaviour of
the RTG with logical formulas. Since this does not contribute any new insights
the interested reader is referred to the earlier paper for further information.

5 Reconstructing lifted (M)CFTGs

Unfortunately, the terminal trees in Figure 3 generated/recognized by the
grammar ΓLTAG given in the Example 3.2, don’t seem to have much in common
with the structures linguists want to talk about, i.e., the ones in Figure 2.

However, in some sense to be made operational, the lifted structures
contain the intended structures. As mentioned before, there is a mapping h
from these explicit structures onto structures interpreting the compositions
(the c’s) and the projections (the π’s) the way the names we have given them
suggest, viz. as compositions and projections, respectively, which are, in fact,
exactly the intended structures.

On the denotational side, we can implement the mapping h with an MSO
definable tree transduction (as defined in Courcelle [5]) and on the opera-
tional side with both tree-walking automata (FSTWA, see [2]) and Macro
Tree Transducer (MTT, see [8]) to transform the lifted structures into the
intended ones. In this paper, we will focus on the logical transduction.

Let us restate our goal then: Rogers [29] has shown the suitability of an
MSO description language L2K,P for linguistics which is based upon the prim-
itive relations of immediate (¢), proper (¢+) and reflexive (¢∗) dominance
and proper precedence (≺). We will show how to define these relations with
an MSO transduction built upon finite-state tree-walking automata (FSTWA)
thereby implementing the unique homomorphism mapping the terms into ele-
ments of the corresponding context-free tree language, i.e., the trees linguists
want to talk about.

Put differently, it should be possible to define a set of relations RI =
{J,J+,J∗ (dominance), c-command, ^ (precedence), . . .} holding between
the nodes n ∈ NL of the explicit or lifted tree T L which carry a “linguistic”
label L in such a way, that when interpreting J

∗ ∈ RI as a tree order on the set
of “linguistic” nodes and ^ ∈ RI as the precedence relation on the resulting
structure, we have a “new” description language on the intended structures.

As mentioned before, we will use an MSO definable tree transduction to
transform the lifted structures into the intended ones. The core of this trans-
duction will be the definition of the new relations via tree-walking automata.

To do so, it is helpful to note a few general facts (illustrated in Figure 4
with another rendering of the last tree of the derivation given in Figure 3,
[17]):

(i) Our trees—that contain no substitutable elements from F0 any more—
feature three families of labels: the “linguistic” symbols, i.e., the lifted
in-operatives of the underlying macro-grammar, L = lift(

⋃

n≥0Σn); the
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Fig. 4. Intended relations on a lifted structure: MCFTGs

“composition” symbols C = {c(n,k)}, n, k ≥ 0; and the “projection” sym-
bols Π.

(ii) All non-terminal nodes in T L are labeled by some c(n,k) ∈ C. This is due
to the fact that the “composition” symbols are the only non-terminals of
a lifted grammar. No terminal node is labeled by some c(n,k).

(iii) The terminal nodes in T L are either labeled by some “linguistic” symbol
or by some “projection” symbol πi ∈ Π.

(iv) Any “linguistic” node dominating anything in the intended tree is on
some left branch in TL, i.e., it is the left-most daughter of some c(n,k) ∈ C.
This lies in the nature of composition: c(n,k)(x0, x1, . . . , xn) evaluates to
x0(x1, . . . , xn).

(v) For any node p labeled with some “projection” symbol πi ∈ Π in TL there
is a unique node µ (labeled with some c(n,k) ∈ C by (ii.)) which properly
dominates p and whose i-th sister will eventually evaluate to the value of
π. Moreover, µ will be the first node properly dominating p which is on
a left branch. This crucial fact is arrived at by an easy induction on the
construction of ΓL from Γ.

By (iv.) it is not hard to find possible dominants in any T L. It is the
problem of determining the actual “filler” of a candidate-dominee which is at
the origin of the complexity of the definition of J. There are three cases to
account for:

(vi) If the node considered carries a “linguistic” label, it evaluates to itself;

(vii) if it has a “composition” label c(n,k), it evaluates to whatever its function
symbol—by (iv.) its leftmost daughter—evaluates to;

(viii) if it carries a “projection” label πi, it evaluates to whatever the node it
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“points to”—by (v.) the ith sister of the first C-node on a left branch
dominating it—evaluates to.

Note that cases (vii.) and (viii.) are inherently recursive such that a simple
MSO definition will not do.

5.1 Reconstruction with FSTWAs

In general, recursive definitions in MSO may lead to undecidability and are
therefore properly extending the expressive power of our logic. Fortunately,
there are certain techniques to ensure that some relation R which would most
naturally be defined recursively has a valid MSO definition. Still, special care
has to be taken to establish that the relations defined are well-behaved in this
respect. In our case this caveat applies to J as well as to its reflexive transitive
closure J

∗.

Following Bloem and Engelfriet [2], we will use a (basic) tree-walking au-
tomaton with node-label tests to specify the intended (immediate) dominance
relation on lifted trees (indicated in Figure 4 with solid green lines), thus
showing in passing that it is a regular tree node relation which is indeed MSO
definable.

Intuitively, those automata—which are a variation of the tree-walking au-
tomata introduced in Aho and Ullman [1]—make transitions from nodes in a
tree to other nodes along its branches. Each single transition can either test
a label of a node, move up in the tree or down to a specific daughter.

A tree-walking automaton (with tests) over some ranked alphabet Σ is a
finite automaton A = (Q,∆, δ, I, F ) with states Q, directives ∆, transitions
δ : Q × ∆ → Q and the initial and final states I ⊆ Q and F ⊆ Q which
traverses a tree along connected edges using three kinds of directives: ↑i—
“move up to the mother of the current node (if it has one and it is its i-th
daughter)”, ↓i—“move to the i-th daughter of the current node (if it exists)”,
and ϕ(x)—“verify that ϕ holds at the current node”.

For any tree t, such an automaton A computes a node relation

Rt(A) = {(x, y) | (x, qi)
∗

=⇒ (y, qf ) for some qi ∈ I and qf ∈ F}

where for all states qi, qj ∈ Q and nodes x, y in t (x, qi) =⇒ (y, qj) iff ∃d ∈ ∆ :
(qi, d, qj) ∈ δ and y is reachable from x in t via d. Note that x is reachable
from itself if the directive was a (successful) test.

It is important not to confuse this relation with the walking language rec-
ognized by the automaton, i.e., the string of directives needed to come from
the initial to the final node in a path.

If all the tests ϕ(x) of A are definable in MSO logic, A specifies a regular
tree-node relation. Bloem and Engelfriet [2], who should be consulted for
details, prove that any regular tree-node relation is itself MSO definable and
provide a general translation of A into an MSO formula. We, however, will
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not exploit the full power of the definition: a basic tree-walking automaton
restricting ϕ to simple tests of node labels (which are trivially MSO definable
via the membership relation) is sufficient for our purposes.

We define AJ = (Q,∆, δ, I, F ) with states Q, directives ∆, transitions δ
and the initial and final states I ⊆ Q and F ⊆ Q, respectively, as given
graphically in Figure 5. Construction of the automaton is based upon the
careful analysis of the trees involved as given above. Basically, we have to
“undo” the lifting process by associating the old function symbols, i.e., the
intended interior nodes, via the composition symbols with their respective
daughters. So it basically implements the facts we presented in (vi.) to (viii.)
above.
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Fig. 5. The FSTWA for dominance on intended structures: MCFTGs

The automaton works as follows: First of all, if it can read a “linguistic”
label on the node it started in and if that node is the first (leftmost) daughter,
it goes to one of its sisters. Then depending on the case it is in, it “reads” a
linguistic label and halts, or reads a composition symbol and finds the leftmost
daughter, or it reads a projection symbol and finds the corresponding node by
walking upward until it is on a leftmost daughter and then goes on to finding
the second sister. This automaton is universal for MCFTGs. 9

However, there is another interpretation of such a tree-walking automaton.
Viewed as an ordinary FSA over the alphabet of directives ∆, A recognizes
a regular (string-) language, the walking language W . In our case it is the
walking-language WJ = L(x) · ↑1 · (↓2 ∪ ↓3 ∪ ↓4) · (

⋃

1≤i≤kWΠi ∪WC)
∗ · L(x)

9 The automaton is also universal for CFTGs in the sense that the only variable part it
contains is the number of projection functions we have to deal with, i.e., the number of the
needed “triangles” in the lower part of the automaton.
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with

WC = C(x) · ↓1
WΠi = Πi(x) · (↑2 ∪ ↑3 ∪ ↑4)

∗ · ↑1 · ↓i+1

which is finally translated into an MSO-formula transWJ
(x, y). For an example

of such a translation, see [27].

For the case of the recursion inherent in reflexive dominance a standard
solution exists in MSO logic on finite trees. It is a well-known fact [4] that
the reflexive transitive closure R∗ of a binary relation R on nodes is (weakly)
MSO-definable, if R itself is. This is done via a second-order property which
holds of the sets of nodes which are closed under R:

R-closed(X)
def
⇐⇒ (∀x, y)[x ∈ X ∧R(x, y)→ y ∈ X]

Now, for any node n, the intersection of all such sets which contain n is exactly
the set of m, such that R∗(n,m). Since we are dealing with the (necessarily
finite) trees generated by a context-free grammar, this construction can be
safely exploited for our purposes;

Similarly to the tree-walking automaton for dominance, we also have to
construct a tree-walking automaton for the intended precedence relation. Since
the RTGs in all the examples we have given are linear RTGs, i.e, they do not
use a variable more than once on any RHS, we can present the definition for
precedence in two steps as follows.

The first step is defined with an FSTWA which encodes the immediate
precedence relations. Then we define precedence following the same reasoning
as before, namely as proper precedence, based upon the definition of immedi-
ate precedence.

Looking at the example in Figure 4, what can we observe concerning prece-
dence? The linguistically labeled terminals seem to appear in the right order
such that precedence reduces to sisterhood. But what happens to the in-
tended interior nodes? And how do we have to treat the projection nodes?
The answer appears to be simple: the nonterminals have to be inserted for
the “right” projection symbols and then precedence is reducible to sisterhood.
But finding the correct projection symbol for a filler is non-trivial.

The FSTWA given in Figure 6 basically consists of two parts: the first part
deals with those cases where the nodes which are labeled with a linguistic label
are already sisters, i.e., the intended terminal nodes, or have a node labeled
with a projection node as sister, i.e., they precede a nonterminal. Between
them we simply have an immediate precedence relation which, in the case
of a projection node, has to be found via a further traversal of the tree. In
Figure 6 those nodes are identified by going up a non-leftmost branch, and then
by descending to the non-leftmost sisters. If the node found bears a linguistic
label, we are done. If it bears a projection symbol, we proceed analogously
to the definitions for dominance, i.e., go up until we find a leftmost node and
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Fig. 6. The FSTWA for precedence on intended structures: MCFTGs

then go to down the right branch.

The situation is complicated by the fact that every node with a linguistic
label at the same time is a potential filler for a projection node. 10 Basically,
we have to reverse the process which finds a filler for a projection node. But
since a projection line can consist of several projection nodes, how do we know
when to stop? The FSTWA ensures that the relevant projection nodes for a
filler are found by recursively looking up and then down a tree. The nodes
bearing a linguistic label which are on a leftmost branch have to look upwards
on leftmost branches until they find the first right branch. At this point they
have to descend again into the subtree to find the projection node. This is
achieved by repeatedly going down non-leftmost branches as long as there
are composition nodes on the way and testing for a projection node. If we
find one, we can start computing its sisters. If it doesn’t have any, it starts
the entire process recursively. The resulting relation will be indicated by ^imm

and the corresponding formula generated by the procedure outlined previously
transW^imm

.

We are now in a position to complete the definition of precedence by using
the definition of immediate precedence. As usual, two nodes stand in the
precedence relation if they either stand in the immediate precedence relation
or if they are dominated by nodes which stand in the immediate precedence

10 In this particular example, where we have only one projection node, the only potential
fillers will either be a second daughter, or the leftmost daughter of a composition node
which is a right daughter.
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relation:

x^ y
def
⇐⇒ (∃u, v)[uJ

∗ x ∧ vJ
∗ y ∧ transW^imm

(u, v)]

5.2 Reconstruction with MSO Transductions

Now we can turn to the definition of the transduction via MSO logic. Since
we did the necessary preparatory work with the presentation of the needed
tree-walking automata, we are almost done.

Let R be a finite set of relation symbols with the corresponding arity for
each r ∈ R given by ρ(r). A relational structure R = 〈DR, (rR)r∈R〉 consists

of the domain DR and the ρ(r)-ary relations rR ⊆ D
ρ(r)
R . We can code trees

as relational structures by taking a tree domain as the domain DRw,A
of the

structure and defining suc as the corresponding tree order.

The classical technique of interpreting a relational structure within another
one forms the basis for MSO transductions. Intuitively, the output tree is
interpreted on the input tree. E.g., suppose that we want to transduce the
input tree t1 into the output tree t2. The nodes of the output tree t2 will be a
subset of the nodes from t1 specified with a unary MSO relation ranging over
the nodes of t1. The daughter relation will be specified with a binary MSO
relation with free variables x and y ranging over the nodes from t1.

Definition 5.1 [MSO transduction] Let R and Q be two finite sets of ranked
relation symbols. A (non-copying) MSO transduction of a relational structure
R (with set of relation symbols R) into another one Q (with set of relation
symbols Q) is defined to be a tuple (ϕ, ψ, (θq)q∈Q) consisting of an MSO for-
mula ϕ defining the domain of the transduction in R, an MSO formula ψ

defining the resulting domain of Q, and a family of MSO formulas θq defining
the new relations Q using only definable formulas from the “old” structure R,
i.e., for α a variable assignment,

DQ = {d ∈ DR | (R, d) |= ψ[α]}

and for each q ∈ Q

qQ = {(d1, . . . , dn) ∈ D
n
Q | (R, d1, . . . , dn) |= θq[α]} where n = ρ(q)

Note that the transduction is only defined if ϕ holds.

Using the defined formulas for J and ^, the specific MSO transduction we
need to transform the lifted structures into the intended ones simply looks
as follows:
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(ϕ, ψ, (θq)q∈Q)

Q = {J,J∗,J+,^, . . . }

ϕ ≡ ϕA
ΓL
TAG

ψ ≡ L(x)

θJ(x, y) ≡ transWJ
(x, y)

θJ∗(x, y) ≡ (∀X)[J-closed(X) ∧ x ∈ X → y ∈ X]

θJ+(x, y) ≡ xJ
∗ y ∨ x 6≈ y

θ^(x, y) ≡ x^ y

θlabels ≡ taken over from R

As desired, the domain of the transduction is characterized by the MSO for-
mula for the lifted trees (see Section 4). The domain, i.e., the set of nodes, of
the intended tree is characterized by the formula ψ which identifies the nodes
via the “linguistic” labels. Building on it, we define the other primitives of
our description language analogous to L2K,P with the given FSTWAs.

Note that while standard “linguistic” relations like c-command or gov-
ernment would be defined in terms of dominance, our approach allows the
alternative route of taking, in the spirit of Frank and Vijay-Shanker [11], c-
command as the primitive relation of linguistic structure by defining, in a
similar fashion, an FSTWA which computes the intended c-command relation
directly, without recourse to dominance.

6 Conclusion

All the constructions that have been cited as evidence for the need of assuming
context-sensitive grammatical devices for the description of natural languages
seem to be amenable to an analysis within the framework of context-free
tree grammars or multiple context-free grammars [18,20,23,26,27]. Based on
the Mezei-Wright result [22] according to which structural accounts of the
context-free tree level can be lifted to the regular tree level where composition
and projection occur as explicit node labels, the paper has focused on a fine-
grained analysis of the process connecting the initial level of explicit trees
with the intended level of context-free or macro trees. In accordance with
the three types of classical approaches in formal language theory we have
provided logical, grammatical and automata-theoretic characterizations of the
homomorphism relating the initial tree algebra of terms to the substitution
algebra of macro terms. Along the way first steps were taken in the direction
of “reverse” linguistics. For the contemporary natural language formalism of
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Tree Adjoining Grammar it has been shown how to accommodate the main
ideas within the algebraic framework outlined above.

Comparing this statement of the result of the paper with the characteri-
zation of context-free graph languages by Engelfriet and van Oostrom [9], we
want to stress the point that our logical description of (M)CFTG languages
does not provide a characterization of this language family in the technical
understanding of an equivalence between MCFTG languages and languages
defined by a regular tree language/closed MSO formula and a macro tree
transducer/MSO transduction. For a recent result on the equivalence between
regular tree languages followed by an MSO definable tree transduction and the
tree languages generated by context-free graph grammars see Engelfriet and
Maneth [8].
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[26] Mönnich, U., Regular Description of HPSG (2001), ms, Universität Tübingen.
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