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Motivation

Large treebanks, databases containing linguistic
annotations of real-world example sentences in the form
of trees, have been compiled over the last years.
Hand-annotated treebanks contain tens of thousands of
trees, but there are automatically-tagged corpora with
millions of sentences available.
It is obvious one cannot look for certain phenomena in
these treebanks by hand. Tools are needed which
facilitate this process.
A key observation here is that it is important to keep
result sets small: one wants to see exactly those
sentences containing the phenomenon one is looking for.
This asks for a powerful query language.



. . . . . .

Implementation Goals

Provide a powerful query language
Clearly defined semantics
Independent of particular annotation or form of treebank
Easy to use
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Negation

One annoyance with the currently available systems is
the limited possibility to use negation. Imagine one looks
for a verb phrase without a dative object. This query
could look as follows:

∃x(VP(x) ∧ ¬∃z(x ▹ z ∧ DA(z)))

Note the negation which is not on the atomic level, but
negates a whole subformula. Because of this, this query
is not expressible in the majority of existing query tools.
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Quantifiers

Another logical construction most query tools have
problems with is quantification. Most of the time, nodes
that are declared are implicitly quantified existentially.
Universal quantification is not available.
This is closely related to the availability of negation,
since ∀ = ¬∃¬. Thus, the previous query would be an
example of this too.
Some tools offer universal quantification, but without
negation.
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Solution

MonaSearch uses a well-known logic formalism as query
language: Monadic Second-Order Logic (MSO).
Clearly defined, model-theoretic semantics
High expressive power
Any tree structure can be queried.
The idea and the way to realize this stem from Kepser
[4], which forms the theoretical base for MonaSearch.
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The power of MSO

MSO is an extension of first-order predicate logic by
second-order variables. These are interpreted to range
over (finite) sets.
As such, full negation is available.
It is even possible to express the transitive closure of a
relation. This allows one to look for e.g. recursive
patterns.
With MSO as query language, negation is handled
effortlessly.
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Formulation Problem

fsq ([3]) offers the full power of first order logic, and is
thus one of the few query tools which can handle
negation as above. It suffers from another problem,
however: the query time is highly dependent of the way
in which the query is posed. Different formulations of
the same query, which are logically equivalent, can have
vastly different query times.
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Tree Automata

The implementation of MonaSearch is based on a
famous result from the 60s [5], that states that MSO
can be translated into tree automata. Tree automata,
once computed, have a linear evaluation time on a tree.
This approach was exploited by the tool MONA [1],
designed for hardware verification. MONA can be used
to compute the tree automaton to a given formula.
MonaSearch wraps MONA to offer an interface suitable
for linguistic use.
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Normal Form

The tree automata function as a logical form for the
query and therefore MonaSearch does not suffer from the
formulation problem. The exact formulation is irrelevant:
it will always compute the same tree automaton.
The user, however, does not need to know anything
about tree automata, the process is entirely transparent.
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Decidability

MSO in general is undecidable. The equivalence with
tree automata provides decidability on trees.
This has the nice side-effect that if a query returns no
results, it is guaranteed that there are none.
By exploiting several tricks, decidability can be
established on finite structures. A general procedure can
be found in [2].
This makes it possible to tackle the structures in tree
banks which go beyond treeness: secondary edges,
crossing edges and disconnected substructures. The
general method has not been implemented, but some
simpler preprocessing takes care of disconnected parts
and crossing edges.
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Complexity

The translation of MSO into tree automata has a very
high complexity. For each quantifier change (that is, an
existential quantifier followed by a universal quantifier,
or the converse), an exponential step is made.
In practice, this turns out not to be a problem. Of all
the queries we have tried out, none took longer than a
few milliseconds for the computation of the automaton.
Generally, for linguistic purposes, no queries are to be
expected that would reach the limit of computability.
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Second Order

MSO transcends first-order logic by allowing
second-order variables. This allows one to express the
recursive closure over a relation expressed as a formula.
Imagine looking for PPs that are arbitrarily deeply
nested. The basic formula would be:

R(x, y) ≡ x ▹ y ∧ PP(x) ∧ PP(y)

We can then insert this formula into the template which
calculates the transitive closure of a formula:

∀X(∀z(R(x, z)→ z ∈ X)∧
(∀z,w(z ∈ X ∧ R(z,w)→ w ∈ X))→ y ∈ X).
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Step by step

a tree bank is selected
the tree bank is preprocessed into binary trees; this is
done only once, the result is stored in a file
the user composes a query
the query is transformed to be evaluated on the binary
trees and converted into something MONA understands
MONA is invoked on the query to compute the
automaton
the automaton is run on every binary tree
the id of each tree recognized is returned, the linguistic
tree with that id satisfies the original query
the results are presented to the user
More details in the article.
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Conclusion

provided a powerful query tool
does not suffer from the formulation problem
efficiency at least as good as existing tools
linear lookup: querying of automatically annotated
corpora seems feasible
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MonaSearch as a Preprocessor?

The automaton approach brings with it the weakness
that only whole trees can be returned as results. But
MonaSearch can be used as some sort of preprocessor,
the result of which is then piped into (slower, less
powerful) tools which look in MonaSearch’s results to
present the user with more detailed information.
Due to the high expressive power of MSO, it should be
no problem to wrap a query in the lesser expressive
language, the second-level tool uses.



. . . . . .

Enhancements

There is still a lot of work which could be done. Apart
from the user interface, which can of course always be
enhanced, some major enhancements are thought of:
A visualization component with which one can choose a
sentence from the results to see the corresponding tree.
An indexing component which does pre-indexing on
node labels occurring in the formula.
Handling of disconnected trees and secondary edges
following the method in the article by Flum, Frick and
Grohe. Involves additional work in the several translation
steps, but some parts can probably be handled easier.
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A very uncertain future

The project at which MonaSearch was developed
finished end of 2008. I will occasionally still work on it,
making minor improvements and fixing bugs. However,
no major work will be done.
If anybody is interested in continuing this project or
integrating it into a bigger program, let me know!
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FINIS
http://tcl.sfs.uni-tuebingen.de/MonaSearch/

http://tcl.sfs.uni-tuebingen.de/MonaSearch/
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